
XML Data Management

Peter Wood

BBK

Peter Wood (BBK) XML Data Management 1 / 337

Outline
1 Introduction

2 XML Fundamentals

3 Document Type Definitions

4 XML Schema Definition Language

5 Relax NG

6 XPath

7 Optimising XPath Queries

8 Evaluating XPath Queries

9 XQuery

10 Relational Mapping

Peter Wood (BBK) XML Data Management 2 / 337

Introduction

Chapter 1

Introduction

Peter Wood (BBK) XML Data Management 3 / 337

Introduction

What is XML?

The eXtensible Markup Language (XML) defines a generic syntax
used to mark up data with simple, human-readable tags
Has been standardized by the World Wide Web Consortium
(W3C) as a format for computer documents
Is flexible enough to be customized for domains as diverse as:

I Web sites
I Electronic data interchange
I News feeds (RSS, e.g., BBC World News)
I Vector graphics
I Mathematical expressions
I Microsoft Word documents
I Music libraries (e.g., iTunes)
I . . .

Peter Wood (BBK) XML Data Management 4 / 337

http://www.w3.org/
http://feeds.bbci.co.uk/news/world/rss.xml

Introduction

What is XML? (2)

Data in XML documents is represented as strings of text
This data is surrounded by text markup, in the form of tags, that
describes the data
A particular unit of data and markup is called an element
XML specifies the exact syntax of how elements are delimited by
tags, what a tag looks like, what names are acceptable, and so on

Peter Wood (BBK) XML Data Management 5 / 337

Introduction

Which is Easier to Understand?

TCP/IP

Stevens

Foundations of Databases

Abiteboul

Hull

Vianu

The C Programming Language

Kernighan

Ritchie

Prentice Hall

...

<bib>

<book>

<title>TCP/IP</title>

<author>Stevens</author>

</book>

<book>

<title> ... </title>

...

</book>

</bib>

Peter Wood (BBK) XML Data Management 6 / 337

Introduction

XML vs. HTML

Markup in an XML document looks similar to that in an HTML
document
However, there are some crucial differences:

I XML is a meta-markup language: it doesn’t have a fixed set of tags
and elements

I To enhance interoperability, people may agree to use only certain
tags (as defined in a DTD or an XML Schema — see later)

I Although XML is flexible in regard to elements that are allowed, it is
strict in many other respects (e.g., closing tags are required)

I Markup in XML only describes a document’s structure; it doesn’t
say anything about how to display it

Peter Wood (BBK) XML Data Management 7 / 337

Introduction

Very Brief Review of HTML

A document structure and hypertext specification language
Specified by the World Wide Web Consortium (W3C)
Designed to specify the logical structure of information
Intended for presentation as Web pages
Text is marked up with tags defining the document’s logical units,
e.g.

I title
I headings
I paragraphs
I lists
I . . .

The displayed properties of the logical units are determined by the
browser (and stylesheet, if present)

Peter Wood (BBK) XML Data Management 8 / 337

http://en.wikipedia.org/wiki/Hypertext
http://www.w3.org/

Introduction

HTML Example

The following is a (very simple) complete HTML document:
<html>

<head>

<title>A Title</title>

</head>

<body>

<h1>A Heading</h1>

</body>

</html>

When loaded in a browser
I “A Title” will be displayed in the title bar of the browser
I “A Heading” will be displayed big and bold as the page contents

Peter Wood (BBK) XML Data Management 9 / 337

Introduction

HTML, XHTML and XML

These days, most web pages use XHTML rather than HTML
XHTML uses the syntax of XML
XHTML corresponds to a particular XML vocabulary or document
type
A document type is specified using a Document Type Definition
(DTD) — see later
HTML is essentially a less strict form of XHTML

Peter Wood (BBK) XML Data Management 10 / 337

Introduction

Limitations of (X)HTML

So why not use XHTML rather than XML?

(X)HTML defines a fixed set of elements (XHTML is one XML
vocabulary)
elements have document structuring semantics
for presentation to human readers
organisations want to be able to define their own elements
applications need to exchange structured data too
applications cannot consume (X)HTML easily
use XML for data exchange and (X)HTML for document
representation

Peter Wood (BBK) XML Data Management 11 / 337

Introduction

XML versus Relational Data

Why not use data from relational databases for exchange?
XML is more flexible:

I XML data is semi-structured rather than structured
I Conformance of the data to a schema is not mandatory
I XML schemas, if used, allow for more varied structures

Relational data can always be (and often is) wrapped as XML

Peter Wood (BBK) XML Data Management 12 / 337

Introduction

Motivating Example

Say we want to store information about a personal CD library
The CDs are all of classical music
Some CDs contain simply solo (e.g., piano) works
Some CDs have orchestral works (with orchestra, conductor)
Some CDs contain performances of works by different composers
We want to avoid repeating information in the descriptions
We have only 4 CDs (see the next few slides)!

Peter Wood (BBK) XML Data Management 13 / 337

Introduction

Example (1)

<CD-library>

<CD number="724356690424">

...

</CD>

<CD number="419160-2">

...

</CD>

<CD number="449719-2">

...

</CD>

<CD number="430702-2">

...

</CD>

</CD-library>

Peter Wood (BBK) XML Data Management 14 / 337

Introduction

Example (2)

<CD number="724356690424">

<performance>

<composer>Frederic Chopin</composer>

<composition>Waltzes</composition>

<soloist>Dinu Lipatti</soloist>

<date>1950</date>

</performance>

</CD>

Peter Wood (BBK) XML Data Management 15 / 337

Introduction

Example (3)

<CD number="419160-2">

<composer>Johannes Brahms</composer>

<soloist>Emil Gilels</soloist>

<performance>

<composition>Piano Concerto No. 2</composition>

<orchestra>Berlin Philharmonic</orchestra>

<conductor>Eugen Jochum</conductor>

<date>1972</date>

</performance>

<performance>

<composition>Fantasias Op. 116</composition>

<date>1976</date>

</performance>

</CD>

Peter Wood (BBK) XML Data Management 16 / 337

Introduction

Example (4)

<CD number="449719-2">

<soloist>Martha Argerich</soloist>

<orchestra>London Symphony Orchestra</orchestra>

<conductor>Claudio Abbado</conductor>

<date>1968</date>

<performance>

<composer>Frederic Chopin</composer>

<composition>Piano Concerto No. 1</composition>

</performance>

<performance>

<composer>Franz Liszt</composer>

<composition>Piano Concerto No. 1</composition>

</performance>

</CD>

Peter Wood (BBK) XML Data Management 17 / 337

Introduction

Example (5)
<CD number="430702-2">

<composer>Antonin Dvorak</composer>

<performance>

<composition>Symphony No. 9</composition>

<orchestra>Vienna Philharmonic</orchestra>

<conductor>Kirill Kondrashin</conductor>

<date>1980</date>

</performance>

<performance>

<composition>American Suite</composition>

<orchestra>Royal Philharmonic</orchestra>

<conductor>Antal Dorati</conductor>

<date>1984</date>

</performance>

</CD>

Peter Wood (BBK) XML Data Management 18 / 337

Introduction

Future of XML

XML offers the possibility of truly cross-platform, long-term data
formats:

I Much of the data from the original moon landings is now effectively
lost

I Even reading an older Word file might already be problematic

XML is a very simple, well-documented data format
Any tool that can read text files can read an XML document
XML may be the most portable and flexible document format since
the ASCII text file

Peter Wood (BBK) XML Data Management 19 / 337

Introduction

Overview

In these lectures we are going to look at
I some basic notions of XML
I how to define XML vocabularies (DTDs, XML schemas)
I how to query XML documents (XPath, XQuery)
I how to process these queries

Peter Wood (BBK) XML Data Management 20 / 337

Introduction

Literature

A. Møller and M. Schwartzbach. An Introduction to XML and Web
Technologies. Addison Wesley, 2006.
S. Abiteboul, I. Manolescu, P. Rigaux, M-C. Rousset and P.
Senellart. Web Data Management. Cambridge University Press,
2012.
E.R. Harold, W.S. Means. XML in a Nutshell. O’Reilly, 2004
H. Katz (editor). XQuery from the Experts. Addison Wesley, 2004
These slides . . .

Peter Wood (BBK) XML Data Management 21 / 337

XML Fundamentals

Chapter 2

XML Fundamentals

Peter Wood (BBK) XML Data Management 22 / 337

XML Fundamentals

Elements, Tags, and Data

A very simple, yet complete, XML document:

<person>

Alan Turing

</person>

Composed of a single element whose name is person

Element is delimited by the start tag <person> and the end tag
</person>

Everything between the start tag and end tag (exclusive) is the
element’s content

Peter Wood (BBK) XML Data Management 23 / 337

XML Fundamentals

Elements, Tags, and Data (2)

Content of the above element is the text string Alan Turing

Whitespace is part of the content (although many applications
choose to ignore it)
<person> and </person> are markup,
The string Alan Turing and surrounding whitespace are
character data

Peter Wood (BBK) XML Data Management 24 / 337

XML Fundamentals

Elements, Tags, and Data (3)

Special syntax for empty elements, elements without content
I Each can be represented by a single tag that begins with < but

ends with />

XML is case sensitive, i.e. <Person> is not the same as <PERSON>

(or <person>)

Peter Wood (BBK) XML Data Management 25 / 337

XML Fundamentals

XML Documents and Trees

XML documents can be represented as trees

<person>

<name>

<first_name>Alan</first_name>

<last_name>Turing</last_name>

</name>

<profession>

computer scientist

</profession>

<profession>

mathematician

</profession>

</person>

Turing

last_namefirst_name

Alan

name

computer
scientist

mathematician

profession profession

person

Peter Wood (BBK) XML Data Management 26 / 337

XML Fundamentals

XML Documents and Trees (2)

The person element contains three child elements: one name and
two profession elements
The person element is called the parent element of these three
elements
An element can have an arbitrary number of child elements and
the elements may be nested arbitrarily deeply
Children of the same parent are called siblings
Overlapping tags are prohibited, so the following is not possible:

example from HTML

Peter Wood (BBK) XML Data Management 27 / 337

XML Fundamentals

XML Documents and Trees (3)

Every XML document has one element without a parent
This element is called the document’s root element (sometimes
called document element)
The root element contains all other elements of a document

Peter Wood (BBK) XML Data Management 28 / 337

XML Fundamentals

Attributes

XML elements can have attributes
An attribute is name-value pair attached to an element’s start tag
Names are separated from values by an equals sign
Values are enclosed in single or double quotation marks
Example:

<person born='1912/06/23' died='1954/06/07'>

Alan Turing

</person>

The order in which attributes appear is not significant

Peter Wood (BBK) XML Data Management 29 / 337

XML Fundamentals

Attributes (2)

We could model the contents of the original document as
attributes:

<person>

<name first='Alan' last='Turing'/>

<profession value='computer scientist'/>

<profession value='mathematician'/>

</person>

This raises the question of when to use child elements and when
to use attributes
There is no simple answer

Peter Wood (BBK) XML Data Management 30 / 337

XML Fundamentals

Attributes vs. Child Elements

Some people argue that attributes should be used for metadata
(about the element) and elements for the information itself

I It’s not always easy to distinguish between the two

Attributes are limited in structure (their value is simply a string)
There can also be no more than one attribute with a given name
Consequently, an element-based structure is more flexible and
extensible

Peter Wood (BBK) XML Data Management 31 / 337

XML Fundamentals

Entities and Entity References

Character data inside an element may not contain, e.g., a raw
unescaped opening angle bracket <
If this character is needed in the text, it has to be escaped by
using the < entity reference
lt is the name of the entity; & and ; delimit the reference
XML predefines five entities:

lt <

amp &

gt >

quot "

apos '

Peter Wood (BBK) XML Data Management 32 / 337

XML Fundamentals

CDATA Sections

When an XML document includes samples of XML or HTML
source code, all <, >, and & characters must be encoded using
entity references
This replacement can become quite tedious
To facilitate the process, literal code can be enclosed in a CDATA
section
Everything between <![CDATA[and]]> is treated as raw
character data
The only thing that cannot appear in a CDATA section is the end
delimiter]]>

Peter Wood (BBK) XML Data Management 33 / 337

XML Fundamentals

Comments

XML documents can also be commented
Similar to HTML comments, they begin with <!-- and end with -->

Comments may appear
I anywhere in character data
I before or after the root element
I However, NOT inside a tag or another comment

XML parsers may or may not pass along information found in
comments

Peter Wood (BBK) XML Data Management 34 / 337

XML Fundamentals

Processing Instructions

In HTML, comments are sometimes abused to support
nonstandard extensions (e.g., server-side includes)
Unfortunately,

I comments may not survive being passed through several different
HTML editors and/or processors

I innocent comments may end up as input to an application

XML uses a special construct to pass information on to
applications: a processing instruction
It begins with <? and ends with ?>

Immediately following the <? is the target (possibly the name of
the application)

Peter Wood (BBK) XML Data Management 35 / 337

XML Fundamentals

Processing Instructions (2)

Examples:

Associating a stylesheet with an XML document:

<?xml-stylesheet type="text/xsl" href="style.xsl"?>

Embedded PHP in (X)HTML:

<?php

mysql_connect("database...",

"user",

"password");

...

mysql_close();

?>

Peter Wood (BBK) XML Data Management 36 / 337

XML Fundamentals

XML Declaration

The XML declaration looks like a processing instruction, but only
gives some information about the document:

<?xml version='1.0'

encoding='US-ASCII'

standalone='yes'?>

version: at the moment 1.0 and 1.1 are available (we focus on 1.0)
encoding: defines the character set used (e.g. ASCII, Latin-1,
Unicode UTF-8)
standalone: determines if some other file (e.g. DTD) has to be
read to determine proper values for parts of the document

Peter Wood (BBK) XML Data Management 37 / 337

XML Fundamentals

Well-Formedness

A well-formed document observes the syntax rules of XML:

Every start tag must have a matching end tag
Elements may not overlap
There must be exactly one root element
Attribute values must be quoted
An element may not have two attributes with the same name
Comments and processing instructions may not appear inside
tags
No unescaped < or & signs may occur in character data

Peter Wood (BBK) XML Data Management 38 / 337

XML Fundamentals

Well-Formedness (2)

XML names must be formed in certain ways:
I May contain standard letters and digits 0 through 9
I May include the punctuation characters underscore (_), hyphen (-),

and period (.)
I May only start with letters or the underscore character
I There is no limit to the length

The above list is not exhaustive; for a complete list look at the
W3C specification
A parser encountering a non-well-formed document will stop its
parsing with an error message

Peter Wood (BBK) XML Data Management 39 / 337

http://www.w3.org/TR/REC-xml/

XML Fundamentals

XML Namespaces

MathML is an XML vocabulary for mathematical expressions
SVG (Scalable Vector Graphics) is an XML vocabulary for
diagrams
say we want to use XHTML, MathML and SVG in a single XML
document
how does a browser know which element is from which
vocabulary?
e.g., both SVG and MathML define a set element
we shouldn’t have to worry about potential name clashes
we should be able to specify different namespaces, one for each
of XHTML, MathML and SVG

Peter Wood (BBK) XML Data Management 40 / 337

http://www.w3.org/Math/
http://www.w3.org/Graphics/SVG/
http://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/html-xml/example.xhtml
http://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/html-xml/example.xhtml

XML Fundamentals

The namespaces solution

The solution is to qualify element names with URIs
A URI (Universal Resource Identifier) is usually used for
identifying a resource on the Web
(A Uniform Resource Locator (URL) is a special type of URI)
A qualified name then consists of two parts:
namespace:local-name

e.g., <http://www.w3.org/2000/svg:circle ... />

where http://www.w3.org/2000/svg is a URI and namespace
The URI does not have to reference a real Web resource
URIs only disambiguate names; they don’t have to define them
In this case, the browser knows the SVG namespace and behaves
accordingly

Peter Wood (BBK) XML Data Management 41 / 337

XML Fundamentals

Namespace declarations

using URIs everywhere is very cumbersome
so namespaces are used indirectly using

I namespace declarations and
I associated prefixes (user-specified)

<... xmlns:svg="http://www.w3.org/2000/svg">

<p>A circle looks like this

...

<svg:circle ... />

...

</...>

The xmlns:svg attribute
I declares the namespace http://www.w3.org/2000/svg
I associates it with prefix svg

Peter Wood (BBK) XML Data Management 42 / 337

XML Fundamentals

Scope of namespace declarations

the scope of a namespace declaration is
I the element containing the declaration
I and all its descendants (those elements nested inside the element)
I can be overridden by nested declarations

both elements and attributes can be qualified with namespaces
unprefixed element names are assigned a default namespace
default namespace declaration: xmlns="URI"

Peter Wood (BBK) XML Data Management 43 / 337

XML Fundamentals

Namespaces example
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:svg="http://www.w3.org/2000/svg">

...

<p>A circle looks like this

<svg:svg ... >

...

<svg:circle ... />

...

</svg:svg>

and has

...

</p>

</html>

html and p are in the default namespace
(http://www.w3.org/1999/xhtml)
Peter Wood (BBK) XML Data Management 44 / 337

XML Fundamentals

Namespaces example (2)
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:svg="http://www.w3.org/2000/svg">

...

<p>A circle looks like this

<svg:svg ... >

...

<svg:circle ... />

...

</svg:svg>

and has

...

</p>

</html>

namespace for svg and circle is http://www.w3.org/2000/svg

note that svg is used both as a prefix and as an element name
Peter Wood (BBK) XML Data Management 45 / 337

XML Fundamentals

Summary

This chapter gave a brief summary of XML
Only the most important aspects (which are needed later on) were
covered

Peter Wood (BBK) XML Data Management 46 / 337

Document Type Definitions

Chapter 3

Document Type Definitions

Peter Wood (BBK) XML Data Management 47 / 337

Document Type Definitions

Document Types

A document type is defined by specifying the constraints which
any document which is an instance of the type must satisfy
For example,

I in an HTML document, one paragraph cannot be nested inside
another

I in an SVG document, every circle element must have an r

(radius) attribute

Document types are
I useful for restricting authors to use particular representations
I important for correct processing of documents by software

Peter Wood (BBK) XML Data Management 48 / 337

Document Type Definitions

Languages for Defining Document Types

There are many languages for defining document types on the
Web, e.g.,

I document type definitions (DTDs)
I XML schema definition language (XSDL)
I relaxNG
I schematron

We will consider the first three of these

Peter Wood (BBK) XML Data Management 49 / 337

Document Type Definitions

Document Type Definitions (DTDs)

A DTD defines a class of documents
The structural constraints are specified using an extended
context-free grammar
This defines

I element names and their allowed contents
I attribute names and their allowed values
I entity names and their allowed values

Peter Wood (BBK) XML Data Management 50 / 337

Document Type Definitions

Valid XML

A valid XML document
I is well-formed and
I has been validated against a DTD
I (the DTD is specified in the document — see later)

Peter Wood (BBK) XML Data Management 51 / 337

Document Type Definitions

DTD syntax

The syntax for an element declaration in a DTD is:
<!ELEMENT name (model) >

where
I ELEMENT is a keyword
I name is the element name being declared
I model is the element content model (the allowed contents of the

element)

The content model is specified using a regular expression over
element names
The regular expression specifies the permitted sequences of
element names

Peter Wood (BBK) XML Data Management 52 / 337

Document Type Definitions

Examples of DTD element declarations

An html element must contain a head element followed by a body

element:
<!ELEMENT html (head, body) >

where "," is the sequence (or concatenation) operator
A list element (not in HTML) must contain either a ul element or
an ol element (but not both):
<!ELEMENT list (ul|ol) >

where "|" is the alternation (or "exclusive or") operator
A ul element must contain zero or more li elements:
<!ELEMENT ul (li)* >

where "*" is the repetition (or "Kleene star") operator

Peter Wood (BBK) XML Data Management 53 / 337

Document Type Definitions

DTD syntax (1)

In the table below:
b denotes any element name, the simplest regular expression
α and β denote regular expressions

DTD Syntax Meaning
b element b must occur
α elements must match α
(α) elements must match α
α , β elements must match α followed by β
α | β elements must match either α or β (not both)
α* elements must match zero or more occurrences of α

Peter Wood (BBK) XML Data Management 54 / 337

Document Type Definitions

DTD syntax (2)

DTD Syntax Meaning
α+ one or more sequences matching α must occur
α? zero or one sequences matching α must occur

EMPTY no element content is allowed
ANY any content (of declared elements and text) is allowed

#PCDATA content is text rather than elements

α+ is short for (α,α*)
α? is short for (α|EMPTY)
#PCDATA stands for “parsed character data,” meaning an XML
parser should parse the text to resolve character and entity
references

Peter Wood (BBK) XML Data Management 55 / 337

Document Type Definitions

RSS

RSS is a simple XML vocabulary for use in news feeds
RSS stands for Really Simple Syndication, among other things
The root (document) element is rss

rss has a single child called channel

channel has a title child, any number of item children (and
others)
Each item (news story) has a title, description, link, pubDate,
. . .

Peter Wood (BBK) XML Data Management 56 / 337

Document Type Definitions

RSS Example Outline
<rss version="2.0">

<channel>

<title> BBC News - World </title>

...

<item>

<title> Hollande becomes French president </title>

...

</item>

<item>

<title> New Greece poll due as talks fail </title>

...

</item>

<item>

<title> EU forces attack Somalia pirates </title>

</item>

...

</channel>

</rss>

Peter Wood (BBK) XML Data Management 57 / 337

Document Type Definitions

RSS Example Fragment (channel)

<channel>

<title> BBC News - World </title>

<link>http://www.bbc.co.uk/news/world/...</link>

<description>The latest stories from the World section of

the BBC News web site.</description>

<lastBuildDate>Tue, 15 May 2012 13:42:05 GMT</lastBuildDate>

<ttl>15</ttl>

...

</channel>

Peter Wood (BBK) XML Data Management 58 / 337

Document Type Definitions

RSS Example Fragment (first item)

<item>

<title>Hollande becomes French president</title>

<description>Francois Hollande says he is fully aware

of the challenges facing France after being sworn

in as the country's new president.</description>

<link>http://www.bbc.co.uk/news/world-europe-...</link>

<pubDate>Tue, 15 May 2012 11:44:17 GMT</pubDate>

...

</item>

Peter Wood (BBK) XML Data Management 59 / 337

Document Type Definitions

RSS Example Fragment (second item)

<item>

<title>New Greece poll due as talks fail</title>

<description>Greece is set to go to the polls again

after parties failed to agree on a government for

the debt-stricken country, says Socialist leader

Evangelos Venizelos.</description>

<link>http://www.bbc.co.uk/news/world-europe-...</link>

<pubDate>Tue, 15 May 2012 13:52:38 GMT</pubDate>

...

</item>

Peter Wood (BBK) XML Data Management 60 / 337

Document Type Definitions

RSS Example Fragment (third item)

<item>

<title>EU forces attack Somalia pirates</title>

<description>EU naval forces conduct their first raid

on pirate bases on the Somali mainland, saying they

have destroyed several boats.</description>

<link>http://www.bbc.co.uk/news/world-africa-...</link>

<pubDate>Tue, 15 May 2012 13:19:51 GMT</pubDate>

...

</item>

Peter Wood (BBK) XML Data Management 61 / 337

Document Type Definitions

Simplified DTD for RSS

<!ELEMENT rss (channel)>

<!ELEMENT channel (title, link, description,

lastBuildDate?, ttl?, item+)>

<!ELEMENT item (title, description, link?, pubDate?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT link (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT lastBuildDate (#PCDATA)>

<!ELEMENT ttl (#PCDATA)>

<!ELEMENT pubDate (#PCDATA)>

Peter Wood (BBK) XML Data Management 62 / 337

Document Type Definitions

Validation of XML Documents

Recall that an XML document is called valid if it is well-formed and
has been validated against a DTD
Validation is essentially checking that the XML document, viewed
as a tree, is a parse tree in the language specified by the DTD
We can use the W3C validator service
Each of the following files has the same DTD specified (as on the
previous slide):

I rss-invalid.xml giving results
I rss-valid.xml giving results

Peter Wood (BBK) XML Data Management 63 / 337

http://validator.w3.org/
http://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/dtds/rss-invalid.xml
http://validator.w3.org/check?uri=http%3A%2F%2Fwww.dcs.bbk.ac.uk%2F~ptw%2Fteaching%2FIWT%2Fdtds%2Frss-invalid.xml&charset=%28detect+automatically%29&doctype=Inline&ss=1&group=0
http://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/dtds/rss-valid.xml
http://validator.w3.org/check?uri=http%3A%2F%2Fwww.dcs.bbk.ac.uk%2F~ptw%2Fteaching%2FIWT%2Fdtds%2Frss-valid.xml&charset=%28detect+automatically%29&doctype=Inline&ss=1&group=0

Document Type Definitions

Referencing a DTD

The DTD to be used to validate a document can be specified
I internally (as part of the document)
I externally (in another file)

done using a document type declaration
declare document to be of type given in DTD
e.g., <!DOCTYPE rss ... >

Peter Wood (BBK) XML Data Management 64 / 337

Document Type Definitions

Declaring an Internal DTD

<?xml version="1.0"?>

<!DOCTYPE rss [

<!-- all declarations for rss DTD go here -->

...

<!ELEMENT rss ... >

...

]>

<rss>

<!-- This is an instance of a document of type rss -->

...

</rss>

element rss must be defined in the DTD
name after DOCTYPE (i.e., rss) must match root element of
document
Peter Wood (BBK) XML Data Management 65 / 337

Document Type Definitions

Declaring an External DTD (1)

<?xml version="1.0"?>

<!DOCTYPE rss SYSTEM "rss.dtd">

<rss>

<!-- This is an instance of a document of type rss -->

...

</rss>

what follows SYSTEM is a URI
rss.dtd is a relative URI, assumed to be in same directory as
source document

Peter Wood (BBK) XML Data Management 66 / 337

Document Type Definitions

Declaring an External DTD (2)
<?xml version="1.0"?>

<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"

"http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">

<math>

<!-- This is an instance of a mathML document type -->

...

</math>

PUBLIC means what follows is a formal public identifier with 4
fields:

1 ISO for ISO standard, + for approval by other standards body, and -

for everything else
2 owner of the DTD: e.g., W3C
3 title of the DTD: e.g., DTD MathML 2.0
4 language abbreviation: e.g., EN

URI gives location of DTD

Peter Wood (BBK) XML Data Management 67 / 337

Document Type Definitions

More on RSS

The RSS 2.0 specification actually states that, for each item, at
least one of title or description must be present
How can we modify our previous DTD to specify this?

The allowed sequences are:
1 title
2 title description
3 description

So what about the following regular expression?
title | (title, description) | description

Peter Wood (BBK) XML Data Management 68 / 337

Document Type Definitions

More on RSS

The RSS 2.0 specification actually states that, for each item, at
least one of title or description must be present
How can we modify our previous DTD to specify this?
The allowed sequences are:

1 title
2 title description
3 description

So what about the following regular expression?
title | (title, description) | description

Peter Wood (BBK) XML Data Management 68 / 337

Document Type Definitions

More on RSS

The RSS 2.0 specification actually states that, for each item, at
least one of title or description must be present
How can we modify our previous DTD to specify this?
The allowed sequences are:

1 title
2 title description
3 description

So what about the following regular expression?
title | (title, description) | description

Peter Wood (BBK) XML Data Management 68 / 337

Document Type Definitions

Non-Deterministic Regular Expressions

The regular expression
title | (title, description) | description

is non-deterministic
This means that a parser must read ahead to find out which part
of the regular expression to match
e.g., given a title element in the input, should a parser try to
match

I title or
I title description

It needs to read the next element to check whether or not it is
description

Peter Wood (BBK) XML Data Management 69 / 337

Document Type Definitions

Non-Deterministic Regular Expressions

The regular expression
title | (title, description) | description

is non-deterministic
This means that a parser must read ahead to find out which part
of the regular expression to match
e.g., given a title element in the input, should a parser try to
match

I title or
I title description

It needs to read the next element to check whether or not it is
description

Peter Wood (BBK) XML Data Management 69 / 337

Document Type Definitions

Non-Deterministic vs Deterministic Regular
Expressions

Non-deterministic regular expressions are forbidden by DTDs and
XSDL
They are allowed by RelaxNG
A non-deterministic regular expression can always be rewritten to
be deterministic

e.g.,
title | (title, description) | description

can be rewritten as
(title, description?) | description

The rewriting may cause an exponential increase in size

Peter Wood (BBK) XML Data Management 70 / 337

Document Type Definitions

Non-Deterministic vs Deterministic Regular
Expressions

Non-deterministic regular expressions are forbidden by DTDs and
XSDL
They are allowed by RelaxNG
A non-deterministic regular expression can always be rewritten to
be deterministic
e.g.,
title | (title, description) | description

can be rewritten as
(title, description?) | description

The rewriting may cause an exponential increase in size

Peter Wood (BBK) XML Data Management 70 / 337

Document Type Definitions

Non-Deterministic vs Deterministic Regular
Expressions

Non-deterministic regular expressions are forbidden by DTDs and
XSDL
They are allowed by RelaxNG
A non-deterministic regular expression can always be rewritten to
be deterministic
e.g.,
title | (title, description) | description

can be rewritten as
(title, description?) | description

The rewriting may cause an exponential increase in size

Peter Wood (BBK) XML Data Management 70 / 337

Document Type Definitions

Attributes

Recall that attribute name-value pairs are allowed in start tags,
e.g., version="2.0" in the rss start tag
Allowed attributes for an element are defined in an attribute list
declaration: e.g., for rss and guid elements

<!ATTLIST rss

version CDATA #FIXED "2.0" >

<!ATTLIST guid

isPermaLink (true|false) "true" >

attribute definition comprises
I attribute name, e.g., version
I type, e.g., CDATA
I default, e.g., "true"

Peter Wood (BBK) XML Data Management 71 / 337

Document Type Definitions

Some Attribute Types

CDATA: any valid character data
ID: an identifier unique within the document
IDREF: a reference to a unique identifier
IDREFS: a reference to several unique identifiers (separated by
white-space)
(a|b|c), e.g.: (enumerated attribute type) possible values are one
of a, b or c
. . .

Peter Wood (BBK) XML Data Management 72 / 337

Document Type Definitions

Attribute Defaults

#IMPLIED: attribute may be omitted (optional)
#REQUIRED: attribute must be present
#FIXED "x", e.g.: attribute optional; if present, value must be x

"x", e.g.: value will be x if attribute is omitted

Peter Wood (BBK) XML Data Management 73 / 337

Document Type Definitions

Mixed Content

In rss, the content of each element comprised either only other
elements or only text
In HTML, on the other hand, paragraph elements allow text
interleaved with various in-line elements, such as em, img, b, etc.
Such elements are said to have mixed content
How do we define mixed content models in a DTD?

Peter Wood (BBK) XML Data Management 74 / 337

Document Type Definitions

Mixed Content Models

Say we want to mix text with elements em, img and b as the
allowed contents of a p element
The DTD content model would be as follows:
<!ELEMENT p (#PCDATA | em | img | b)* >

I #PCDATA must be first (in the definition)
I It must be followed by the other elements separated by |
I The subexpression must have * applied to it

These restrictions limit our ability to constrain the content model
(see XSDL later)

Peter Wood (BBK) XML Data Management 75 / 337

Document Type Definitions

Entities

An entity is a physical unit such as a character, string or file
Entities allow

I references to non-keyboard characters
I abbreviations for frequently used strings
I documents to be broken up into multiple parts

An entity declaration in a DTD associates a name with an entity,
e.g.,
<!ENTITY BBK "Birkbeck, University of London">

An entity reference, e.g., &BBK; substitutes value of entity for its
name in document
An entity must be declared before it is referenced

Peter Wood (BBK) XML Data Management 76 / 337

Document Type Definitions

General Entities

BBK is an example of a general entity
In XML, only 5 general entity declarations are built-in

I & (&), < (<), > (>), " ("), ' ('),

All other entities must be declared in a DTD
The values of internal entities are defined in the same document
as references to them
The values of external entities are defined elsewhere, e.g.,
<!ENTITY HTML-chapter SYSTEM "html.xml" >

I then &HTML-chapter; includes the contents of file html.xml at the
point of reference

I standalone="no" must be included in the XML declaration

Peter Wood (BBK) XML Data Management 77 / 337

Document Type Definitions

Parameter Entities

Parameter entities are
I used only within XML markup declarations
I declared by inserting % between ENTITY and name, e.g.,

<!ENTITY % list "OL | UL" >

<!ENTITY % heading "H1 | H2 | H3 | H4 | H5 | H6" >

I referenced using % and ; delimiters, e.g.,

<!ENTITY % block "P | %list; | %heading; | ..." >

As an example. see the HTML 4.01 DTD

Peter Wood (BBK) XML Data Management 78 / 337

http://www.w3.org/TR/html4/sgml/dtd.html

Document Type Definitions

Limitations of DTDs

There is no data typing, especially for element content
They are only marginally compatible with namespaces
We cannot use mixed content and enforce the order and number
of child elements
It is clumsy to enforce the presence of child elements without also
enforcing an order for them (i.e. no & operator from SGML)
Element names in a DTD are global (see later)
They use non-XML syntax
The XML Schema Definition Language, e.g., addresses these
limitations

Peter Wood (BBK) XML Data Management 79 / 337

http://www.w3.org/XML/Schema

XML Schema Definition Language

Chapter 4

XML Schema Definition
Language (XSDL)

Peter Wood (BBK) XML Data Management 80 / 337

XML Schema Definition Language

XML Schema

XML Schema is a W3C Recommendation
I XML Schema Part 0: Primer
I XML Schema Part 1: Structures
I XML Schema Part 2: Datatypes

describes permissible contents of XML documents
uses XML syntax
sometimes referred to as XSDL: XML Schema Definition
Language
addresses a number of limitations of DTDs

Peter Wood (BBK) XML Data Management 81 / 337

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

XML Schema Definition Language

Simple example

file greeting.xml contains:
<?xml version="1.0"?>

<greet>Hello World!</greet>

file greeting.xsd contains:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="greet" type="xsd:string"/>

</xsd:schema>

xsd is prefix for the namespace for the "schema of schemas"
declares element with name greet to be of built-in type string

Peter Wood (BBK) XML Data Management 82 / 337

XML Schema Definition Language

DTDs vs. schemas

DTD Schema
<!ELEMENT> declaration xsd:element element
<!ATTLIST> declaration xsd:attribute element
<!ENTITY> declaration n/a

#PCDATA content xsd:string type
n/a other data types

Peter Wood (BBK) XML Data Management 83 / 337

XML Schema Definition Language

Linking a schema to a document

xsi:noNamespaceSchemaLocation attribute on root element
this says no target namespace is declared in the schema
xsi prefix is mapped to the URI:
http://www.w3.org/2001/XMLSchema-instance

this namespace defines global attributes that relate to schemas
and can occur in instance documents
for example:

<?xml version="1.0"?>

<greet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="greeting.xsd">

Hello World!

</greet>

Peter Wood (BBK) XML Data Management 84 / 337

XML Schema Definition Language

Validating a document

W3C provides an XML Schema Validator (XSV)
URL is http://www.w3.org/2001/03/webdata/xsv

submit XML file (and schema file)
report generated for greeting.xml as follows

Peter Wood (BBK) XML Data Management 85 / 337

http://www.w3.org/2001/03/webdata/xsv
http://www.w3.org/2001/03/webdata/xsv?docAddrs=http%3A%2F%2Fwww.dcs.bbk.ac.uk%2F%7Eptw%2Fteaching%2Fschemas%2Fgreeting.xml&style=xsl

XML Schema Definition Language

More complex document example

<cd xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="cd.xsd">

<composer>Johannes Brahms</composer>

<performance>

<composition>Piano Concerto No. 2</composition>

<soloist>Emil Gilels</soloist>

<orchestra>Berlin Philharmonic</orchestra>

<conductor>Eugen Jochum</conductor>

<recorded>1972</recorded>

</performance>

<performance>

<composition>Fantasias Op. 116</composition>

<soloist>Emil Gilels</soloist>

<recorded>1976</recorded>

</performance>

<length>PT1H13M37S</length>

</cd>

Peter Wood (BBK) XML Data Management 86 / 337

XML Schema Definition Language

Simple and complex data types

XML schema allows definition of data types as well as
declarations of elements and attributes
simple data types

I can contain only text (i.e., no markup)
I e.g., values of attributes
I e.g., elements without children or attributes

complex data types can contain
I child elements (i.e., markup) or
I attributes

Peter Wood (BBK) XML Data Management 87 / 337

XML Schema Definition Language

More complex schema example

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="cd" type="CDType"/>

<xsd:complexType name="CDType">

<xsd:sequence>

<xsd:element name="composer" type="xsd:string"/>

<xsd:element name="performance" type="PerfType"

maxOccurs="unbounded"/>

<xsd:element name="length" type="xsd:duration"

minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

...

</xsd:schema>

Peter Wood (BBK) XML Data Management 88 / 337

XML Schema Definition Language

Main schema components

xsd:element declares an element and assigns it a type, e.g.,

<xsd:element name="composer" type="xsd:string"/>

using a built-in, simple data type, or

<xsd:element name="cd" type="CDType"/>

using a user-defined, complex data type
xsd:complexType defines a new type, e.g.,

<xsd:complexType name="CDType">

...

</xsd:complexType>

defining named types allows reuse (and may help readability)
xsd:attribute declares an attribute and assigns it a type (see
later)

Peter Wood (BBK) XML Data Management 89 / 337

XML Schema Definition Language

Structuring element declarations

xsd:sequence
I requires elements to occur in order given
I analogous to , in DTDs

xsd:choice
I allows one of the given elements to occur
I analogous to | in DTDs

xsd:all
I allows elements to occur in any order
I analogous to & in SGML DTDs

Peter Wood (BBK) XML Data Management 90 / 337

XML Schema Definition Language

Defining number of element occurrences

minOccurs and maxOccurs attributes control the number of
occurrences of an element, sequence or choice
minOccurs must be a non-negative integer
maxOccurs must be a non-negative integer or unbounded
default value for each of minOccurs and maxOccurs is 1

Peter Wood (BBK) XML Data Management 91 / 337

XML Schema Definition Language

Another complex type example

<xsd:complexType name="PerfType">

<xsd:sequence>

<xsd:element name="composition" type="xsd:string"/>

<xsd:element name="soloist" type="xsd:string"

minOccurs="0"/>

<xsd:sequence minOccurs="0">

<xsd:element name="orchestra" type="xsd:string"/>

<xsd:element name="conductor" type="xsd:string"/>

</xsd:sequence>

<xsd:element name="recorded" type="xsd:gYear"/>

</xsd:sequence>

</xsd:complexType>

Peter Wood (BBK) XML Data Management 92 / 337

XML Schema Definition Language

An equivalent DTD

<!ELEMENT CD (composer, (performance)+, (length)?)>

<!ELEMENT performance (composition, (soloist)?,

(orchestra, conductor)?, recorded)>

<!ELEMENT composer (#PCDATA)>

<!ELEMENT length (#PCDATA)> <!-- duration -->

<!ELEMENT composition (#PCDATA)>

<!ELEMENT soloist (#PCDATA)>

<!ELEMENT orchestra (#PCDATA)>

<!ELEMENT conductor (#PCDATA)>

<!ELEMENT recorded (#PCDATA)> <!-- gYear -->

Peter Wood (BBK) XML Data Management 93 / 337

XML Schema Definition Language

Declaring attributes

use xsd:attribute element inside an xsd:complexType

has attributes name, type, e.g.,

<xsd:attribute name="version" type="xsd:number"/>

attribute use is optional
I if omitted means attribute is optional (like #IMPLIED)
I for required attributes, say use="required" (like #REQUIRED)

for fixed attributes, say fixed="..." (like #FIXED), e.g.,

<xs:attribute name="version" type="xs:number" fixed="2.0"/>

for attributes with default value, say default="..."

for enumeration, use xsd:simpleType

attributes must be declared at the end of an xsd:complexType

Peter Wood (BBK) XML Data Management 94 / 337

XML Schema Definition Language

Locally-scoped element names

in DTDs, all element names are global
XML schema allows element types to be local to a context, e.g.,

<xsd:element name="book">

<xsd:element name="title"> ... </xsd:element>

...

</xsd:element>

<xsd:element name="employee">

<xsd:element name="title"> ... </xsd:element>

...

</xsd:element>

content models for two occurrences of title can be different

Peter Wood (BBK) XML Data Management 95 / 337

XML Schema Definition Language

Simple data types

Form a type hierarchy; the root is called anyType
I all complex types
I anySimpleType

F string
F boolean, e.g., true
F anyUri, e.g., http://www.dcs.bbk.ac.uk/~ptw/home.html
F duration, e.g., P1Y2M3DT10H5M49.3S
F gYear, e.g., 1972
F float, e.g., 123E99
F decimal, e.g., 123456.789
F ...

lowest level above are the primitive data types
for a full list, see Simple Types in the Primer

Peter Wood (BBK) XML Data Management 96 / 337

http://www.dcs.bbk.ac.uk/~ptw/home.html
http://www.w3.org/TR/xmlschema-0/#simpleTypesTable

XML Schema Definition Language

Primitive date and time types

date, e.g., 1994-04-27
time, e.g., 16:50:00+01:00 or 15:50:00Z if in Co-ordinated
Universal Time (UTC)
dateTime, e.g., 1918-11-11T11:00:00.000+01:00
duration, e.g., P2Y1M3DT20H30M31.4159S
"Gregorian" calendar dates (introduced in 1582 by Pope Gregory
XIII):

I gYear, e.g., 2001
I gYearMonth, e.g., 2001-01
I gMonthDay, e.g., --12-25 (note hyphen for missing year)
I gMonth, e.g., --12-- (note hyphens for missing year and day)
I gDay, e.g., ---25 (note only 3 hyphens)

Peter Wood (BBK) XML Data Management 97 / 337

XML Schema Definition Language

Built-in derived string types

Derived from string:
normalizedString (newline, tab, carriage-return are converted to
spaces)

I token (adjacent spaces collapsed to a single space; leading and
trailing spaces removed)

F language, e.g., en
F name, e.g., my:name

Derived from name:
NCNAME ("non-colonized" name), e.g., myName

I ID
I IDREF
I ENTITY

Peter Wood (BBK) XML Data Management 98 / 337

XML Schema Definition Language

Built-in derived numeric types

Derived from decimal:
integer (decimal with no fractional part), e.g., -123456

I nonPositiveInteger, e.g., 0, -1
F negativeInteger, e.g., -1

I nonNegativeInteger, e.g., 0, 1
F positiveInteger, e.g., 1
F . . .

I . . .

Peter Wood (BBK) XML Data Management 99 / 337

XML Schema Definition Language

User-derived simple data types

complex data types can be created "from scratch"
new simple data types must be derived from existing simple data
types
derivation can be by one of

I extension
F list : a list of values of an existing data type
F union: allows values from two or more data types

I restriction: limits the values allowed using, e.g.,
F maximum value (e.g., 100)
F minimum value (e.g., 50)
F length (e.g., of string or list)
F number of digits
F enumeration (list of values)
F pattern

above constraints are known as facets

Peter Wood (BBK) XML Data Management 100 / 337

XML Schema Definition Language

Restriction by enumeration

<xsd:element name="MScResult">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="distinction"/>

<xsd:enumeration value="merit"/>

<xsd:enumeration value="pass"/>

<xsd:enumeration value="fail"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

contents of MScResult element is a restriction of the xsd:string

type
must be one of the 4 values given
e.g., <MScResult>pass</MScResult>

Peter Wood (BBK) XML Data Management 101 / 337

XML Schema Definition Language

Restriction by values

examMark can be from 0 to 100

<xsd:element name="examMark">

<xsd:simpleType>

<xsd:restriction base="xsd:nonNegativeInteger">

<xsd:maxInclusive value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

or, equivalently

<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="0"/>

<xsd:maxInclusive value="100"/>

</xsd:restriction>

Peter Wood (BBK) XML Data Management 102 / 337

XML Schema Definition Language

Restriction by pattern

<xsd:element name="zipcode">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{5}(-\d{4})?"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

value attribute contains a regular expression
\d means any digit
() used for grouping
x{5} means exactly 5 x’s (in a row)
x? indicates zero or one x

zipcode examples: 90720-1314 and 22043

Peter Wood (BBK) XML Data Management 103 / 337

XML Schema Definition Language

Document with mixed content

We may want to mix elements and text, e.g.:

<letter>

Dear Mr <name>Smith</name>,

Your order of <quantity>1</quantity>

<product>Baby Monitor</product> was shipped

on <date>1999-05-21</date>.

</letter>

A DTD would have to contain:

<!ELEMENT letter (#PCDATA|name|quantity|product|date)*>

which cannot enforce the order of subelements

Peter Wood (BBK) XML Data Management 104 / 337

XML Schema Definition Language

Schema fragment declaring mixed content

<xsd:element name="letter">

<xsd:complexType mixed="true">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="quantity" type="xsd:positiveInteger"/>

<xsd:element name="product" type="xsd:string"/>

<xsd:element name="date" type="xsd:date" minOccurs="0"/>

<!-- etc. -->

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Peter Wood (BBK) XML Data Management 105 / 337

Relax NG

Chapter 5

Relax NG

Peter Wood (BBK) XML Data Management 106 / 337

Relax NG

Problems with DTDs

DTDs are sometimes not powerful enough
e.g., (to simplify) in HTML

1 a form element can occur in a table element and
2 a table element can occur in a form element, but
3 a form element cannot occur inside another form element

we have
<!ELEMENT table (... form ...) >

<!ELEMENT form (... table ...) >

but condition (3) above cannot be enforced by an XML DTD

Peter Wood (BBK) XML Data Management 107 / 337

Relax NG

Problems with XML schema

XML schema can handle the previous example using
locally-scoped element names
but what about the following?

I a document (doc element) contains one or more paragraphs (par
elements)

I the first paragraph has a different content model to subsequent
paragraphs

I (perhaps the first letter of the first paragraph is enlarged)

we want something like
<!ELEMENT doc (par, par*) >

but where two occurrences of par have different content models
this cannot be specified in XML schema

Peter Wood (BBK) XML Data Management 108 / 337

Relax NG

RelaxNG

RelaxNG resulted from the merger of two earlier projects
I RELAX (REgular LAnguage description for XML)
I TREX (Tree Regular Expressions for XML)

It has the same power as Regular Tree Grammars
It has two syntactic forms: one XML-based, one not (called the
compact syntax)
It is simpler than XML schema
It uses XML Schema Part 2 for a vocabulary of data types

Peter Wood (BBK) XML Data Management 109 / 337

http://www.relaxng.org/

Relax NG

Compact Syntax: RSS Example

element rss {

element channel {

element title { text },

element link { xsd:anyURI },

element description { text },

element lastBuildDate { xsd:dateTime }?,

element ttl { xsd:positiveInteger }?,

element item {

element title { text },

element description { text },

element link { xsd:anyURI }?,

element pubDate { xsd:dateTime }?

}+

}

}

Peter Wood (BBK) XML Data Management 110 / 337

Relax NG

Named patterns

It is often convenient to be able to give names to parts of a pattern
This is similar to using non-terminal symbols in a (context-free)
grammar
It is also related to the use of complex types in XSDL
RelaxNG uses “=” in the compact syntax (and define elements in
the XML syntax) to give names to patterns
The name start is used for the root pattern

Peter Wood (BBK) XML Data Management 111 / 337

Relax NG

Compact Syntax with Named Patterns: RSS Example

start = RSS

RSS = element rss { Channel }

Channel = element channel { Title,Link,Desc,LBD?,TTL?,Item+ }

Title = element title { text }

Link = element link { xsd:anyURI }

Desc = element description { text }

LBD = element lastBuildDate { xsd:dateTime }

TTL = element ttl { xsd:positiveInteger }

Item = element item { Title, Desc, Link, PD? }

PD = element pubDate { xsd:dateTime }

Peter Wood (BBK) XML Data Management 112 / 337

Relax NG

Table and forms example (compact syntax)

TableWithForm = element table { ... Form ... }

Form = element form { ... TableWithoutForm ... }

TableWithoutForm = element table { ... }

No Form pattern appears in the third definition above

Peter Wood (BBK) XML Data Management 113 / 337

Relax NG

Paragraphs example (compact syntax)

D = element doc { P1, P2* }

P1 = element par { ... }

P2 = element par { ... }

The content models for the P1 and P2 patterns can be different

Peter Wood (BBK) XML Data Management 114 / 337

Relax NG

Summary

We have considered 3 different languages for defining XML
document types
DTDs are simple, but their main limitation is that data types (other
than strings) are not provided
XSDL is comprehensive, but rather complicated
RelaxNG is the most expressive of the three, while still remaining
quite simple; it is also an ISO standard, but has not been widely
adopted

Peter Wood (BBK) XML Data Management 115 / 337

XPath

Chapter 6

XPath

Peter Wood (BBK) XML Data Management 116 / 337

XPath

Introduction

XPath is a language that lets you identify particular parts of XML
documents
XPath interprets XML documents as nodes (with content)
organised in a tree structure
XPath indicates nodes by (relative) position, type, content, and
several other criteria
Basic syntax is somewhat similar to that used for navigating file
hierarchies
XPath 1.0 (1999) and 2.0 (2010) are W3C recommendations

Peter Wood (BBK) XML Data Management 117 / 337

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/

XPath

Some Tools for XPath

Saxon (specifically Saxon-HE which implements XPath 2.0,
XQuery 1.0 and XSLT 2.0)
eXist-db (a native XML database supporting XPath 2.0, XQuery
1.0 and XSLT 1.0)
XPath Checker (add-on for Firefox)
XPath Expression Testbed (available online)

Peter Wood (BBK) XML Data Management 118 / 337

http://www.saxonica.com/documentation/
http://exist-db.org/
https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/
http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm

XPath

Data Model

XPath’s data model has some non-obvious features:

The tree’s root node is not the same as the document’s root
(document) element
The tree’s root node contains the entire document including the
root element (and comments and processing instructions that
appear before it)
XPath’s data model does not include everything in the document:
XML declaration and DTD are not addressable
xmlns attributes are reported as namespace nodes

Peter Wood (BBK) XML Data Management 119 / 337

XPath

Data Model (2)

There are 6 types of node:
I root
I element
I attribute
I text
I comment
I processing instruction

Element nodes have an associated set of attribute nodes
Attribute nodes are not children of element nodes
The order of child element nodes is significant
We will only consider the first 4 types of node

Peter Wood (BBK) XML Data Management 120 / 337

XPath

Example (1)

Recall our CD library example

<CD-library>

<CD number="724356690424">

<performance>

<composer>Frederic Chopin</composer>

<composition>Waltzes</composition>

<soloist>Dinu Lipatti</soloist>

<date>1950</date>

</performance>

</CD>

...

Peter Wood (BBK) XML Data Management 121 / 337

XPath

Example (2)

...

<CD number="419160-2">

<composer>Johannes Brahms</composer>

<soloist>Emil Gilels</soloist>

<performance>

<composition>Piano Concerto No. 2</composition>

<orchestra>Berlin Philharmonic</orchestra>

<conductor>Eugen Jochum</conductor>

<date>1972</date>

</performance>

<performance>

<composition>Fantasias Op. 116</composition>

<date>1976</date>

</performance>

</CD>

...

Peter Wood (BBK) XML Data Management 122 / 337

XPath

Example (3)

...

<CD number="449719-2">

<soloist>Martha Argerich</soloist>

<orchestra>London Symphony Orchestra</orchestra>

<conductor>Claudio Abbado</conductor>

<date>1968</date>

<performance>

<composer>Frederic Chopin</composer>

<composition>Piano Concerto No. 1</composition>

</performance>

<performance>

<composer>Franz Liszt</composer>

<composition>Piano Concerto No. 1</composition>

</performance>

</CD>

...

Peter Wood (BBK) XML Data Management 123 / 337

XPath

Example (4)

...

<CD number="430702-2">

<composer>Antonin Dvorak</composer>

<performance>

<composition>Symphony No. 9</composition>

<orchestra>Vienna Philharmonic</orchestra>

<conductor>Kirill Kondrashin</conductor>

<date>1980</date>

</performance>

<performance>

<composition>American Suite</composition>

<orchestra>Royal Philharmonic</orchestra>

<conductor>Antal Dorati</conductor>

<date>1984</date>

</performance>

</CD>

</CD-library>

Peter Wood (BBK) XML Data Management 124 / 337

XPath

Example — Tree Structure

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 125 / 337

XPath

Location Path

The most useful XPath expression is a location path:
e.g., /CD-library/CD/performance
A location path consists of at least one location step:
e.g., CD-library, CD and performance are location steps
A location step takes as input a set of nodes, also called the
context (to be defined more precisely later)
The location step expression is applied to this node set and
results in an output node set
This output node set is used as input for the next location step

Peter Wood (BBK) XML Data Management 126 / 337

XPath

Location Path (2)

There are two different kinds of location paths:
I Absolute location paths
I Relative location paths

An absolute location path
I starts with /
I is followed by a relative location path
I is evaluated at the root (context) node of a document
I e.g., /CD-library/CD/performance

A relative location path
I is a sequence of location steps
I each separated by /
I evaluated with respect to some other context nodes
I e.g., CD/performance

Peter Wood (BBK) XML Data Management 127 / 337

XPath

Evaluation of absolute location path

/CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 128 / 337

XPath

Evaluation of absolute location path
/

CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 128 / 337

XPath

Evaluation of absolute location path
/CD-library

/CD/performance

p c s p p s o t d p p c p p

C C C C

LL

Peter Wood (BBK) XML Data Management 128 / 337

XPath

Evaluation of absolute location path
/CD-library/CD

/performance

p c s p p s o t d p p c p p

C C C C

L

C C C C

Peter Wood (BBK) XML Data Management 128 / 337

XPath

Evaluation of absolute location path
/CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

p p p p p p p

Peter Wood (BBK) XML Data Management 128 / 337

XPath

Location Step

In general, a location step in turn consists of a
I (navigation) axis
I node test
I predicate(s)

Syntax is axis :: node test [predicate] . . . [predicate]

e.g., child::CD[composer='Johannes Brahms']
I child is the axis
I CD is the node test
I composer='Johannes Brahms' is the predicate

A location step is applied to each node in the context (i.e., each
node becomes the context node)
All resulting nodes are added to the output set of this location step

Peter Wood (BBK) XML Data Management 129 / 337

XPath

Evaluation of predicate
/child::CD-library/child::CD

[composer='Johannes Brahms']

p c s p p s o t d p p c p p

C C C C

L

C C C C

Peter Wood (BBK) XML Data Management 130 / 337

XPath

Evaluation of predicate
/child::CD-library/child::CD[composer='Johannes Brahms']

p c s p p s o t d p p c p p

C C C C

L

C

Peter Wood (BBK) XML Data Management 130 / 337

XPath

Axes

An axis specifies what nodes, relative to the current context node,
to consider
There are 13 different axes (some can be abbreviated)

I self, abbreviated by .
I child, abbreviated by empty axis
I parent, abbreviated by ..
I descendant-or-self, abbreviated by empty location step
I descendant, ancestor, ancestor-or-self
I following, following-sibling, preceding, preceding-sibling
I attribute, abbreviated by @
I namespace

Peter Wood (BBK) XML Data Management 131 / 337

XPath

Axes

The following slides show (graphical) examples of the axes,
assuming the node in bold typeface is the context node

Peter Wood (BBK) XML Data Management 132 / 337

XPath

Self-Axis

The self-axis just contains the context node itself

Peter Wood (BBK) XML Data Management 133 / 337

XPath

Child-Axis

The child-axis contains the children (direct descendants) of the
context node

Peter Wood (BBK) XML Data Management 134 / 337

XPath

Parent-Axis

The parent-axis contains the parent (direct ancestor) of the
context node

Peter Wood (BBK) XML Data Management 135 / 337

XPath

Descendant-Axis

The descendant-axis contains all direct and indirect descendants
of the context node

Peter Wood (BBK) XML Data Management 136 / 337

XPath

Descendant-Or-Self-Axis

The descendant-or-self-axis contains all direct and indirect
descendants of the context node + the context node itself

Peter Wood (BBK) XML Data Management 137 / 337

XPath

Ancestor-Axis

The ancestor-axis contains all direct and indirect ancestors of the
context node

Peter Wood (BBK) XML Data Management 138 / 337

XPath

Ancestor-Or-Self-Axis

The ancestor-or-self-axis contains all direct and indirect ancestors
of the context node + the context node itself

Peter Wood (BBK) XML Data Management 139 / 337

XPath

Following-Axis

The following-axis contains all nodes that begin after the context
node ends

Peter Wood (BBK) XML Data Management 140 / 337

XPath

Preceding-Axis

The preceding-axis contains all nodes that end before the context
node begins

Peter Wood (BBK) XML Data Management 141 / 337

XPath

Following-Sibling-Axes

The following-sibling-axis contains all following nodes that have
the same parent as the context node

Peter Wood (BBK) XML Data Management 142 / 337

XPath

Preceding-Sibling-Axis

The preceding-sibling-axis contains all preceding nodes that have
the same parent as the context node

Peter Wood (BBK) XML Data Management 143 / 337

XPath

Partitioning

The axes self, ancestor, descendant, following and preceding
partition a document into five disjoint subtrees:

Peter Wood (BBK) XML Data Management 144 / 337

XPath

Attribute-Axis

Attributes are handled in a special way in XPath
The attribute-axis contains all the attribute nodes of the context
node
This axis is empty if the context node is not an element node
Does not contain xmlns attributes used to declare namespaces

Peter Wood (BBK) XML Data Management 145 / 337

XPath

Namespace-Axis

The namespace-axis contains all namespaces in scope of the
context node
This axis is empty if the context node is not an element node

Peter Wood (BBK) XML Data Management 146 / 337

XPath

Node Tests

Once the correct relative position of a node has been identified the
type of a node can be tested
A node test further refines the nodes selected by the location step
A double colon :: separates the axis from the node test
There are seven different kinds of node tests

name
prefix:*
node()

text()

comment()

processing-instruction()

*

Peter Wood (BBK) XML Data Management 147 / 337

XPath

Name

The name node test selects all elements with a matching name
I e.g., if our context is a set of 4 CD elements and the location step

uses the child axis, then we get element nodes with different
names

I we can use the name node test to return, e.g., only soloist

elements

Along the attribute-axis it matches all attributes with the same
name

Peter Wood (BBK) XML Data Management 148 / 337

XPath

Prefix:*

Along an element axis, all nodes whose namespace URIs are the
same as the prefix are matched
This node test is also available for attribute nodes

Peter Wood (BBK) XML Data Management 149 / 337

XPath

Comment, Text, Processing-Instruction

comment() matches all comment nodes
text() matches all text nodes
processing-instruction() matches all processing instructions

Peter Wood (BBK) XML Data Management 150 / 337

XPath

Node and *

node() selects all nodes, regardless of type: attribute,
namespace, element, text, comment, processing instruction, and
root
* selects all element nodes, regardless of name

I If the axis is the attribute axis, then it selects all attribute nodes
I If the axis is the namespace axis, then is selects all namespace

nodes

Peter Wood (BBK) XML Data Management 151 / 337

XPath

Key for full CD library example

Element name Abbreviation Colour
root black
library L white
cd C grey
performance p pink
composer c blue
composition green
soloist s yellow
conductor t red
orchestra o brown
date d orange

Peter Wood (BBK) XML Data Management 152 / 337

XPath

Full CD library example

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 153 / 337

XPath

Example using * and node()
/CD-library/CD/*/node()

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 154 / 337

XPath

Example showing difference between * and node()
/CD-library/CD/*/*

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 155 / 337

XPath

Example using descendant
//composer or /descendant-or-self::node()/composer

p c s p p s o t d p p c p p

C C C C

L

c c

Peter Wood (BBK) XML Data Management 156 / 337

XPath

Another example using descendant
//performance/composer or
/descendant-or-self::node()/child::composer

p c s p p s o t d p p c p p

C C C C

L

Peter Wood (BBK) XML Data Management 157 / 337

XPath

Predicates

A node set can be reduced further with predicates
While each location step must have an axis and a node test
(which may be empty), a predicate is optional
A predicate contains a Boolean expression which is tested for
each node in the resulting node set
A predicate is enclosed in square brackets []

Peter Wood (BBK) XML Data Management 158 / 337

XPath

Predicates (2)

XPath supports a full complement of relational operators,
including =, >, <, >=, <=, !=
XPath also provides Boolean and and or operators to combine
expressions logically
In some cases a predicate may not be a Boolean; then XPath will
convert it to one implicitly (if that is possible):

I an empty node set is interpreted as false
I a non-empty node set is interpreted as true

Peter Wood (BBK) XML Data Management 159 / 337

XPath

Example using a predicate

//performance[composer]

p c s p p s o t d p p c p p

C C C C

L

p p p

Peter Wood (BBK) XML Data Management 160 / 337

XPath

Another example using a predicate

//CD[performance/orchestra]

p c s p p s o t d p p c p p

C C C C

L

C C

Peter Wood (BBK) XML Data Management 161 / 337

XPath

Example using multiple predicates

//performance[conductor][date]

p c s p p s o t d p p c p p

C C C C

L

p p p

Peter Wood (BBK) XML Data Management 162 / 337

XPath

Further examples with predicates

//performance[composer='Frederic Chopin']/composition
returns

1 <composition>Waltzes</composition>
2 <composition>Piano Concerto No. 1</composition>

//CD[@number="449719-2"]//composition returns
1 <composition>Piano Concerto No. 1</composition>
2 <composition>Piano Concerto No. 1</composition>

The two composition nodes have the same value, but they are
different nodes

Peter Wood (BBK) XML Data Management 163 / 337

XPath

Further examples with predicates

//performance[composer='Frederic Chopin']/composition
returns

1 <composition>Waltzes</composition>
2 <composition>Piano Concerto No. 1</composition>

//CD[@number="449719-2"]//composition returns
1 <composition>Piano Concerto No. 1</composition>
2 <composition>Piano Concerto No. 1</composition>

The two composition nodes have the same value, but they are
different nodes

Peter Wood (BBK) XML Data Management 163 / 337

XPath

Functions

XPath provides many functions that may be useful in predicates
Each XPath function takes as input or returns one of these four
types:

I node set
I string
I Boolean
I number

Peter Wood (BBK) XML Data Management 164 / 337

XPath

More about Context

Each location step and predicate is evaluated with respect to a
given context
A specific context is defined as (〈N1,N2, . . .Nm〉,Nc) with

I a context list 〈N1,N2, . . .Nm〉 of nodes in the tree
I a context node Nc belonging to the list

The context length m is the size of the context list
The context node position c ∈ [1,m] gives the position of the
context node in the list

Peter Wood (BBK) XML Data Management 165 / 337

XPath

More about XPath Evaluation

Each step si is interpreted with respect to a context; its result is a
node list
A step si is evaluated with respect to the context of step si−1

More precisely:
I for i = 1 (first step)

if the path is absolute, the context is the root of the XML tree;
else (relative paths) the context is defined by the environment;

I For i > 1
if N = 〈N1,N2, . . .Nm〉 is the result of step si−1,
step si is successively evaluated with respect to the context (N ,Nj),
for each j ∈ [1,m]

The result of the path expression is the node list obtained after
evaluating the last step

Peter Wood (BBK) XML Data Management 166 / 337

XPath

Node-set Functions

Node-set functions operate on or return information about node
sets
Examples:

I position(): returns a number equal to the position of the current
node in the context list

F [position()=i] can be abbreviated as [i]

I last(): returns the size (i.e. the number of nodes in) the context list
I count(set): returns the size of the argument node set
I id(): returns a node set containing all elements in the document

with any of the specified IDs

Peter Wood (BBK) XML Data Management 167 / 337

XPath

Example about context

The expression //CD/performance[2] returns the second
performance of each CD, not the second of all performances
The result of the step CD is the list of the 4 CD nodes
The step performance[2] is evaluated once for each of 4 CD
nodes in the context

Peter Wood (BBK) XML Data Management 168 / 337

XPath

Example about context (2)

The result is the list comprising the second performance element
child of each CD:

1 <performance>

<composition>Fantasias Op. 116</composition>

<date>1976</date>

</performance>
2 <performance>

<composer>Franz Liszt</composer>

<composition>Piano Concerto No. 1</composition>

</performance>
3 <performance>

<composition>American Suite</composition>

<orchestra>Royal Philharmonic</orchestra>

<conductor>Antal Dorati</conductor>

<date>1984</date>

</performance>

Peter Wood (BBK) XML Data Management 169 / 337

XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date

The the following 4 expressions should all be equivalent
I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!

Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170 / 337

XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date

The the following 4 expressions should all be equivalent
I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions

But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170 / 337

XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date

The the following 4 expressions should all be equivalent
I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170 / 337

XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date

The the following 4 expressions should all be equivalent
I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

Peter Wood (BBK) XML Data Management 170 / 337

XPath

More about the position() function

position() is a function that returns the position of the current
node in the context node set
For most axes it counts forward from the context node
For the “backward” axes it counts backwards from the context
node
The “backward” axes are: ancestor, ancestor-or-self, preceding,
and preceding-sibling

Peter Wood (BBK) XML Data Management 171 / 337

XPath

Examples using position()

So, to get the CD immediately before the one that was composed
by Dvorak:
//CD[composer='Antonin Dvorak']/preceding::CD[1]

This selects the third CD
To get the last CD (without having to know how many there are),
use //CD[position()=last()]

Peter Wood (BBK) XML Data Management 172 / 337

XPath

Example using a different axis

//date/following-sibling::* returns the following:
1 <performance>

<composer>Frederic Chopin</composer>

<composition>Piano Concerto No. 1</composition>

</performance>
2 <performance>

<composer>Franz Liszt</composer>

<composition>Piano Concerto No. 1</composition>

</performance>

only one date element in the document has any following siblings

Peter Wood (BBK) XML Data Management 173 / 337

XPath

Examples using count

//CD[count(performance)=2] returns CD elements with exactly
two performance elements as children: the last 3 CDs

//CD[performance][performance] of course does not do this:
I it is equivalent to //CD[performance]
I which returns CD elements with at least one performance child

Peter Wood (BBK) XML Data Management 174 / 337

XPath

Examples using count

//CD[count(performance)=2] returns CD elements with exactly
two performance elements as children: the last 3 CDs
//CD[performance][performance] of course does not do this:

I it is equivalent to //CD[performance]
I which returns CD elements with at least one performance child

Peter Wood (BBK) XML Data Management 174 / 337

XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements

What about //CD[count(//orchestra)=1]?
I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

Peter Wood (BBK) XML Data Management 175 / 337

XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements
What about //CD[count(//orchestra)=1]?

I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

Peter Wood (BBK) XML Data Management 175 / 337

XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements
What about //CD[count(//orchestra)=1]?

I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

Peter Wood (BBK) XML Data Management 175 / 337

XPath

String Functions

String functions include basic string operations
Examples:

I string-length(): returns the length of a string
I concat(): concatenates its arguments in order from left to right and

returns the combined string
I contains(s1, s2): returns true if s2 is a substring of s1
I normalize-space(): strips all leading and trailing whitespace from

its argument

Peter Wood (BBK) XML Data Management 176 / 337

XPath

Boolean Functions

Boolean functions always return a Boolean with the value true or
false:

I true(): simply returns true (makes up for the lack of Boolean
literals in XPath)

I false(): returns false
I not(): inverts its argument (i.e., true becomes false and vice versa)

Examples:
I //performance[orchestra][not(conductor)] returns

performance elements which have an orchestra child but no
conductor child

I //CD[not(.//soloist)] returns CDs containing no soloists

Peter Wood (BBK) XML Data Management 177 / 337

XPath

Boolean Functions

Boolean functions always return a Boolean with the value true or
false:

I true(): simply returns true (makes up for the lack of Boolean
literals in XPath)

I false(): returns false
I not(): inverts its argument (i.e., true becomes false and vice versa)

Examples:
I //performance[orchestra][not(conductor)] returns

performance elements which have an orchestra child but no
conductor child

I //CD[not(.//soloist)] returns CDs containing no soloists

Peter Wood (BBK) XML Data Management 177 / 337

XPath

Boolean Functions (2)

boolean(): converts its argument to a Boolean and returns the
result

I Numbers are false if they are zero or NaN (not a number)
I Node sets are false if they are empty
I Strings are false if they have zero length

Peter Wood (BBK) XML Data Management 178 / 337

XPath

Number Functions

Number functions include a few simple numeric functions
Examples:

I sum(set): converts each node in a node set to a number and
returns the sum of these numbers

I round(), floor(), ceiling(): round numbers to integer values

Peter Wood (BBK) XML Data Management 179 / 337

XPath

Summary

XPath is used to navigate through elements and attributes in an
XML document
XPath is a major element in many W3C standards: XQuery, XSLT,
XLink, XPointer
It is also used to navigate XML trees represented in Java or
JavaScript, e.g.
So an understanding of XPath is fundamental to much advanced
XML usage

Peter Wood (BBK) XML Data Management 180 / 337

Optimising XPath Queries

Chapter 7

Optimising XPath Queries

Peter Wood (BBK) XML Data Management 181 / 337

Optimising XPath Queries

Types of Optimisation

In general, there are two types of query optimisation:
I logical optimisation
I physical optimisation

Logical optimisation is concerned with, e.g., rewriting a given
query to be minimal in size (i.e., to remove redundant parts)
Physical optimisation refers to strategies to make query evaluation
as efficient as possible
In this chapter, we will study some aspects of logical optimisation
for XPath
Later chapters will discuss physical optimisation

Peter Wood (BBK) XML Data Management 182 / 337

Optimising XPath Queries

XPath Fragment

We will consider only a fragment of XPath
Each location step is just

I the name of an element, or
I *, or
I empty (giving rise to //)

optionally followed by predicates

Peter Wood (BBK) XML Data Management 183 / 337

Optimising XPath Queries

<bookstore>

<book>

<author><last-name>Abiteboul</last-name></author>

<author><last-name>Hull</last-name></author>

<author><last-name>Vianu</last-name></author>

<title>Foundations of Databases</title>

<isbn>0-201-53771-0</isbn>

<price>26.95</price>

</book>

<magazine>

<title>The Economist</title>

<date><day>26</day><month>June</month><year>1999</year></date>

<price>2.50</price>

</magazine>

<book>

<isbn>0-934613-40-0</isbn>

<price>34.95</price>

</book>

</bookstore>

Peter Wood (BBK) XML Data Management 184 / 337

Optimising XPath Queries

Some Queries on bookstore

On this specific document
/bookstore/book/isbn gives the same result as //isbn

I because every isbn is a child of book and every book is a child of
bookstore

/bookstore/*/title gives the same result as
/bookstore/(book|magazine)/title and //title

I because the only elements that can be children of bookstore and
parents of title are either book or magazine

//magazine[date[day][month]]/title gives the same result as
//magazine[date/day][date/month]/title

I because each magazine has only a single date

But these queries are not equivalent in general

Peter Wood (BBK) XML Data Management 185 / 337

Optimising XPath Queries

Some Queries on bookstore

On this specific document
/bookstore/book/isbn gives the same result as //isbn

I because every isbn is a child of book and every book is a child of
bookstore

/bookstore/*/title gives the same result as
/bookstore/(book|magazine)/title and //title

I because the only elements that can be children of bookstore and
parents of title are either book or magazine

//magazine[date[day][month]]/title gives the same result as
//magazine[date/day][date/month]/title

I because each magazine has only a single date

But these queries are not equivalent in general

Peter Wood (BBK) XML Data Management 185 / 337

Optimising XPath Queries

XPath Queries as Tree Patterns

We can view an XPath query Q in our fragment as a tree pattern P
Each node test (element name or *) in Q becomes a node in P
If Q has subexpression A/B, then nodes A and B in P are
connected by a single edge
If Q has subexpression A//B, then nodes A and B in P are
connected by a double edge
The node in P corresponding to the element name forming the
output of Q is shown in boldface

Peter Wood (BBK) XML Data Management 186 / 337

Optimising XPath Queries

Tree Pattern Example

/bookstore//*[date/day][date/month]/title

day month

date date title

*

bookstore

��
�
��
�

HH
H
HH

H

Peter Wood (BBK) XML Data Management 187 / 337

Optimising XPath Queries

Containment and Equivalence of XPath Queries

Given an XPath query Q and an XML tree t , the answer of
evaluating Q on t is denoted by Q(t)
For XPath queries P and Q, we say

I P contains Q, written P ⊇ Q, if for all trees t , P(t) ⊇ Q(t)
I P is equivalent to Q, written P ≡ Q, if P ⊇ Q and Q ⊇ P

Containment of XPath queries is useful
I to show equivalence of queries for optimization
I to determine if views can be used in query processing
I to reuse cached query results

Peter Wood (BBK) XML Data Management 188 / 337

Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 337

Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 337

Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 337

Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months

bookstore//title ⊇ bookstore//book//title
I There are no fewer bookstores containing titles than bookstores

containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 337

Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 337

Optimising XPath Queries

Examples of Containment and Equivalence

//isbn ⊇ /bookstore/book/isbn
I There are no fewer isbns than isbns of books

/bookstore/*/title ⊇ /bookstore/book/title
I There are no fewer title that titles of books

book ⊇ book[price]
I There are no fewer books than books with prices

date[year] ⊇ date[month][year]
I There are no fewer dates with years than dates with years and

months
bookstore//title ⊇ bookstore//book//title

I There are no fewer bookstores containing titles than bookstores
containing books containing titles

magazine[date/year] ≡ magazine[date/year][date] so [date]

is redundant

Peter Wood (BBK) XML Data Management 189 / 337

Optimising XPath Queries

Example of Containment (tree patterns)

day month

date date title

magazine

bookstore

�
��

�
��

H
HH

H
HH

⊇

day month

price date title

magazine

bookstore

�
�
�

@
@
@

�
��

�
��

H
HH

H
HH

Peter Wood (BBK) XML Data Management 190 / 337

Optimising XPath Queries

Example of Equivalence (tree patterns)

day month

title date title

magazine

bookstore

�
�
�

@
@
@

�
��
�
��

H
HH

H
HH

≡

day month

date title

magazine

bookstore

�
�
�

@
@
@

H
HH

H
HH

Peter Wood (BBK) XML Data Management 191 / 337

Optimising XPath Queries

Using DTDs

We can use DTDs to simplify expressions further
Assume we know the document we want to query is valid with
respect to a DTD D
The DTD D specifies certain constraints
e.g., every book element must have an isbn element as a child
We already know that /bookstore/book ⊇
/bookstore/book[isbn]

Using the DTD D, we now know that /bookstore/book is
equivalent to /bookstore/book[isbn], but only when querying
documents valid with respect to D

Peter Wood (BBK) XML Data Management 192 / 337

Optimising XPath Queries

Constraints implied by a DTD

Assume we are given the following DTD D (syntax simplified):
bookstore ((book|magazine)+)

book (author*, title?, isbn, price)

author (first-name?, last-name)

magazine (title, volume?, issue?, date, price)

date ((day?, month)?, year)

Some constraints implied by the DTD D:
I every author element must have a last-name child (child

constraint)
I every date element with a day child must have a month child

(sibling constraint)
I every book element has at most one title child (functional

constraint)

Peter Wood (BBK) XML Data Management 193 / 337

Optimising XPath Queries

Constraints implied by a DTD

Assume we are given the following DTD D (syntax simplified):
bookstore ((book|magazine)+)

book (author*, title?, isbn, price)

author (first-name?, last-name)

magazine (title, volume?, issue?, date, price)

date ((day?, month)?, year)

Some constraints implied by the DTD D:
I every author element must have a last-name child (child

constraint)
I every date element with a day child must have a month child

(sibling constraint)
I every book element has at most one title child (functional

constraint)

Peter Wood (BBK) XML Data Management 193 / 337

Optimising XPath Queries

Examples

/bookstore/book[price]/author is equivalent to
/bookstore/*/author since

I every book must have a price
I book must be the parent of author

bookstore/book[author/first-name][author/last-name] can
first be rewritten as
bookstore/book[author/first-name][author] and then as
book[author/first-name]

Peter Wood (BBK) XML Data Management 194 / 337

Optimising XPath Queries

Examples

/bookstore/book[price]/author is equivalent to
/bookstore/*/author since

I every book must have a price
I book must be the parent of author

bookstore/book[author/first-name][author/last-name] can
first be rewritten as
bookstore/book[author/first-name][author] and then as
book[author/first-name]

Peter Wood (BBK) XML Data Management 194 / 337

Optimising XPath Queries

Containment and Equivalence under DTDs

We can use DTD constraints to find more equivalences
When given a DTD D and a tree t known to satisfy D
Let SAT (D) denote the set of trees satisfying DTD D
For XPath queries P and Q,

I P D-contains Q, written P ⊇SAT (D) Q, if for all trees t ∈ SAT (D),
P(t) ⊇ Q(t)

I P is D-equivalent to Q, written P ≡SAT (D) Q, if P ⊇SAT (D) Q and
Q ⊇SAT (D) P

Peter Wood (BBK) XML Data Management 195 / 337

Optimising XPath Queries

Example of D-Equivalence (Child Constraint)

Every author must have a last-name

last-name

author isbn

book

HH
HH

HH

⊆

⊇SAT (D)

author isbn

book

HH
HH

HH

Peter Wood (BBK) XML Data Management 196 / 337

Optimising XPath Queries

Example of D-Equivalence (Sibling Constraint)

Every date with a day must have a month

day month

date title

magazine

�
�
�

@
@
@

HH
H
HH

H

⊆

⊇SAT (D)

day

date title

magazine

HH
H

HH
H

Peter Wood (BBK) XML Data Management 197 / 337

Optimising XPath Queries

Example of D-Equivalence (Path Constraint)

The only path from bookstore to isbn is through book

isbn

book

bookstore

⊇SAT (D)

⊆
isbn

bookstore

Peter Wood (BBK) XML Data Management 198 / 337

Optimising XPath Queries

D-Equivalence Example (Functional Constraint)

Every magazine has a single date

day month

date title

magazine

bookstore

�
�
�

@
@
@

HH
HH

HH
⊇SAT (D)

⊆

day month

date date title

magazine

bookstore

��
��

��

HH
HH

HH

Peter Wood (BBK) XML Data Management 199 / 337

Optimising XPath Queries

Summary

We have considered logical optimisation of a fragment of XPath
Can be used to delete redundant subexpressions from queries
Further redundancies can be found when documents are valid
with respect to a DTD
We will consider efficient evaluation of XPath and some general
physical optimisation techniques later

Peter Wood (BBK) XML Data Management 200 / 337

Evaluating XPath Queries

Chapter 8

Evaluating XPath Queries

Peter Wood (BBK) XML Data Management 201 / 337

Evaluating XPath Queries

Introduction

When XML documents are small and can fit in memory, evaluating
XPath expressions can be done efficiently
But what if we have very large documents stored on disk?
How should they be stored (fragmented)?
How can we query them efficiently (by reducing the number of
disk accesses needed)?

Peter Wood (BBK) XML Data Management 202 / 337

Evaluating XPath Queries

Fragmentation

A large document will not fit on a single disk page (block)
It will need to be fragmented over possibly a large number of
pages
Updates to the document may result in further fragmentation

Peter Wood (BBK) XML Data Management 203 / 337

Evaluating XPath Queries

Pre-order traversal

Recall pre-order traversal of a tree:
To traverse a non-empty tree in pre-order, perform the following
operations recursively at each node, starting with the root node:

1 Visit the node
2 Traverse the root nodes of subtrees of the node from left to right

Peter Wood (BBK) XML Data Management 204 / 337

Evaluating XPath Queries

Fragmentation based on pre-order traversal

A very simple method to store the document nodes on disk is as
follows:

A pre-order traversal of the document, starting from the root,
groups as many nodes as possible within the current page
When the page is full, a new page is used to store the nodes that
are encountered next
and so on, until the entire tree has been traversed

Peter Wood (BBK) XML Data Management 205 / 337

Evaluating XPath Queries

CD library example — first two CDs

Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 337

Evaluating XPath Queries

CD library example — first two CDs
Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 337

Evaluating XPath Queries

CD library example — first two CDs
Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 337

Evaluating XPath Queries

CD library example — first two CDs
Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 337

Evaluating XPath Queries

CD library example — first two CDs
Stored as 3 fragments

p c s p p

C C

L

c m s d m o t d m d

Peter Wood (BBK) XML Data Management 206 / 337

Evaluating XPath Queries

Simple XPath queries

Selecting both CDs nodes requires accessing 2 fragments
Evaluating /CD-library/CD/performance requires accessing all 3
fragments
This is very small example, but one can see that such
fragmentation could lead to very bad performance

Two improvements:
I Smart fragmentation: Group those nodes that are often accessed

simultaneously together
I Rich node identifiers: Sophisticated node identifiers reducing the

cost of join operations needed to “stitch” back fragments

Peter Wood (BBK) XML Data Management 207 / 337

Evaluating XPath Queries

Simple XPath queries

Selecting both CDs nodes requires accessing 2 fragments
Evaluating /CD-library/CD/performance requires accessing all 3
fragments
This is very small example, but one can see that such
fragmentation could lead to very bad performance
Two improvements:

I Smart fragmentation: Group those nodes that are often accessed
simultaneously together

I Rich node identifiers: Sophisticated node identifiers reducing the
cost of join operations needed to “stitch” back fragments

Peter Wood (BBK) XML Data Management 207 / 337

Evaluating XPath Queries

Representation on disk

One of the simplest ways to represent an XML document on disk
is to

I Assign an identifier to each node
I Store the XML document as one relation (which may be

fragmented) representing a set of edges

Peter Wood (BBK) XML Data Management 208 / 337

Evaluating XPath Queries

Simple node identfiers
Here node identifiers are simply integers, assigned in some order

p c s p p

C C

L

c m s d m o t d m d

1

2

3 9

8

11 13 18

4 5 6 7 10 12 14 15 16 17 19 20

Peter Wood (BBK) XML Data Management 209 / 337

Evaluating XPath Queries

The Edge relation
pid cid clabel
- 1 CD-library
1 2 CD
2 3 performance
3 4 composer
3 5 composition
3 6 soloist
3 7 date
1 8 CD

.

“pid” is the id of the parent node
“cid” is the id of the child node
“clabel” is the element name of the child node
(attributes and text nodes can be handled similarly)

Peter Wood (BBK) XML Data Management 210 / 337

Evaluating XPath Queries

Processing XPath queries

//composer: can be evaluated by a simple lookup

πcid(σclabel=‘composer ′(Edge))

/CD-library/CD: requires one join

πcid((σclabel=‘CD−library ′(Edge)) oncid=pid (σclabel=‘CD′(Edge)))

Peter Wood (BBK) XML Data Management 211 / 337

Evaluating XPath Queries

Processing XPath queries

//composer: can be evaluated by a simple lookup

πcid(σclabel=‘composer ′(Edge))

/CD-library/CD: requires one join

πcid((σclabel=‘CD−library ′(Edge)) oncid=pid (σclabel=‘CD′(Edge)))

Peter Wood (BBK) XML Data Management 211 / 337

Evaluating XPath Queries

Processing XPath queries (2)

/CD-library//composer: many joins potentially needed

Let A := (σclabel=‘CD−library ′(Edge))

Let B := (σclabel=‘composer ′(Edge))

/CD-library/composer πcid(A oncid=pid B)
/CD-library/*/composer πcid(A oncid=pid Edge oncid=pid B)
/CD-library/*/*/composer . . .
.

This assumes the query processor does not have any schema
information available which might constrain where composer

elements are located

Peter Wood (BBK) XML Data Management 212 / 337

Evaluating XPath Queries

Element-partitioned Edge relations

A simple improvement is to use element-partitioned Edge
relations
Here, the Edge relation is partitioned into many relations, one for
each element name

CD-library

pid cid
- 1

CD

pid cid
1 2
1 8

performance

pid cid
2 3
8 13
8 18

composer

pid cid
3 4
8 9

Peter Wood (BBK) XML Data Management 213 / 337

Evaluating XPath Queries

Element-partitioned Edge relations (2)

This saves some space (element names are not repeated)
It also reduces the disk I/O needed to retrieve the identifiers of
elements having a given name
However, it does not solve the problem of evaluating queries with
// steps in non-leading positions

Peter Wood (BBK) XML Data Management 214 / 337

Evaluating XPath Queries

Path-partitioned approach to fragmentation

Path-partitioning tries to solve the problem of // steps at arbitrary
positions in a query
This approach uses one relation for each distinct path in the
document, e.g., /CD-library/CD/performance
There is also another relation, called Paths, which contains all the
unique paths

Peter Wood (BBK) XML Data Management 215 / 337

Evaluating XPath Queries

Path-partitioned storage

/CD-library:
pid cid
- 1

/CD-library/CD:
pid cid
1 2
1 8

/CD-library/CD/composer:
pid cid
8 9

/CD-library/CD/performance/composer:
pid cid
3 4

Paths:

path
/CD-library

/CD-library/CD

/CD-library/CD/performance

/CD-library/CD/performance/composer

. . .

Peter Wood (BBK) XML Data Management 216 / 337

Evaluating XPath Queries

Path-partitioned storage (2)

Based on a path-partitioned store, a query such as
//CD//composer can be evaluated in two steps:

I Scan the Paths relation to identify all the paths matching the given
XPath query

I For each such path, scan the corresponding path-partitioned
relation

So for //CD//composer, the paths would be
I /CD-library/CD/composer
I /CD-library/CD/performance/composer

So only these two relations need to be scanned

Peter Wood (BBK) XML Data Management 217 / 337

Evaluating XPath Queries

Path-partitioned storage (3)

The evaluation of XPath queries with many branches will still
require joins across the relations
However, the evaluation of // steps is simplified, thanks to the first
processing step, performed on the path relation
For very structured data, the path relation is typically small
Thus, the cost of the first processing step is likely negligible, while
the performance benefits of avoiding numerous joins are quite
important
However, for some data, the path relation can be large, and in
some cases, even larger than the data itself

Peter Wood (BBK) XML Data Management 218 / 337

Evaluating XPath Queries

Node identifiers

Node identifiers are needed to indicate how nodes are related to
one another in an XML tree
This is particularly important when the data is fragmented and we
need to reconnect children with their parents
However, it is often even more useful to be able to identify other
kinds of relationships between nodes, just by looking at their
identifiers
This means we need to use identifiers that are richer than simple
consecutive integers
We will see later how this information can be used in query
processing

Peter Wood (BBK) XML Data Management 219 / 337

Evaluating XPath Queries

Region-based identifiers

The region-based identifier scheme assigns to each XML node n
a pair of integers
The pair consists of the offset of the node’s start tag, and the
offset of its end tag
We denote this pair by (n.start ,n.end)
Consider the following offsets of tags:

0 30 50 90

<a>

the region-based identifier of the <a> element is the pair (0,90)
the region-based identifier of the element is the pair (30,50)

Peter Wood (BBK) XML Data Management 220 / 337

Evaluating XPath Queries

Using region-based identifiers

Comparing the region-based identifiers of two nodes n1 and n2
allows for deciding whether n1 is an ancestor of n2

Observe that this is the case if and only if:
I n1.start < n2.start , and
I n1.end > n2.end

There is no need to use byte offsets:
I (Start tag, end tag). Count only opening and closing tags (as one

unit each) and assign the resulting counter values to each element
I (Pre, post). Pre-order and post-order index (see next slides)

Region-based identifiers are quite compact, as their size only
grows logarithmically with the number of nodes in a document

Peter Wood (BBK) XML Data Management 221 / 337

Evaluating XPath Queries

Post-order traversal

Recall post-order traversal of a tree:
To traverse a non-empty tree in post-order, perform the following
operations recursively at each node, starting with the root node:

1 Traverse the root nodes of subtrees of the node from left to right
2 Visit the node

Peter Wood (BBK) XML Data Management 222 / 337

Evaluating XPath Queries

Example of (pre, post) node identifiers

p c s p p

C C

L

c m s d m o t d m d

(1,20)

(2,6)

(3,5) (9,8)

(8,19)

(11,10) (13,15) (18,18)

(4,1) (5,2) (6,3) (7,4) (10,7) (12,9) (14,11) (15,12) (16,13) (17,14) (19,16) (20,17)

Peter Wood (BBK) XML Data Management 223 / 337

Evaluating XPath Queries

Using (pre, post) identifiers to find ancestors

The same method as for other region-based identifiers allows us
to decide, for two nodes n1 and n2, whether n1 is an ancestor of n2

As before, this is the case if and only if:
I n1.pre < n2.pre, and
I n1.post > n2.post

where ni .pre and ni .post are the pre-order and post-order
numbers assigned to node ni , respectively

Peter Wood (BBK) XML Data Management 224 / 337

Evaluating XPath Queries

Using (pre, post) identifiers to find parents

One can add another number to a node identifier which indicates
the depth of the node in the tree
The root is assigned a depth of 1; the depth increases as we go
down the tree
Using (pre,post ,depth), we can decide whether node n1 is a
parent of node n2

Node n1 is a parent of node n2 if and only if
I n1 is an ancestor of n2 and
I n1.depth = n2.depth − 1

Peter Wood (BBK) XML Data Management 225 / 337

Evaluating XPath Queries

Dewey-based identifiers

These identifiers use the principal of the Dewey classification
system used in libraries for decades
To get the identifier of a child node, one adds a suffix to the
identifier of its parent (including a separator)
e.g., if the parent’s identifier is 1.2.3 and the child is the second
child of this parent, then its identifier is 1.2.3.2

Peter Wood (BBK) XML Data Management 226 / 337

Evaluating XPath Queries

Example of Dewey-based identifiers

p c s p p

C C

L

c m s d m o t d m d

1

1.1

1.1.1 1.2.1

1.2

1.2.2 1.2.3 1.2.4

1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.4 1.2.1.1 1.2.2.1 1.2.3.1 1.2.3.2 1.2.3.3 1.2.3.4 1.2.4.1 1.2.4.2

Peter Wood (BBK) XML Data Management 227 / 337

Evaluating XPath Queries

Using Dewey-based identifiers
Let n1 and n2 be two identifiers, of the form:
n1 = x1.x2.xm and n2 = y1.y2.yn

The node identified by n1 is an ancestor of the node identified by
n2 if and only if n1 is a prefix of n2

When this is the case, the node identified by n1 is the parent of
the node identified by n2 if and only if n = m + 1
Dewey IDs allow finding other relationships such as
preceding-sibling and preceding (respectively, following-sibling,
and following)
The node identified by n1 is a preceding sibling of the node
identified by n2 if and only if

1 x1.x2.xm−1 = y1.y2.yn−1 and
2 xm < yn

The main drawback of Dewey identifiers is their length: the length
is variable and can get large

Peter Wood (BBK) XML Data Management 228 / 337

Evaluating XPath Queries

Structural identifiers and updates

Consider a node with Dewey ID 1.2.2.3
I Suppose we insert a new first child for node 1.2
I Then the ID of node 1.2.2.3 becomes 1.2.3.3

In general:
I Offset-based identifiers need to be updated as soon as a character

is inserted or removed in the document
I (start, end), (pre, post), and Dewey IDs need to be updated when

the elements of the documents change
I It is possible to avoid re-labelling on deletions, but gaps will appear

in the labelling scheme
I Re-labelling operations are quite expensive

Peter Wood (BBK) XML Data Management 229 / 337

Evaluating XPath Queries

Tree pattern query evaluation

Assume we have element-partitioned relations using (pre, post)
identifiers
Assume we want to evaluate a tree pattern query
One way is to decompose the query into its “basic” patterns:

I Each basic pattern is just a pair of nodes
I connected by a child edge or a descendant edge

We particularly want an efficient way of evaluating basic patterns
that use the descendant operator

Peter Wood (BBK) XML Data Management 230 / 337

Evaluating XPath Queries

Tree Pattern Example

day month

date date title

magazine

bookstore

�
��

�
��

H
HH

H
HH

Peter Wood (BBK) XML Data Management 231 / 337

Evaluating XPath Queries

Decomposed Tree Pattern Example

bookstore

magazine

magazine

date

magazine

title

date

day

date

month

Peter Wood (BBK) XML Data Management 232 / 337

Evaluating XPath Queries

Example tree with (pre, post) identifiers
(Taken from the book “Web Data Management”)

b d c b d

b b f

a

e g e g e g g

(1,16)

(2,5)

(3,3) (6,4)

(7,14)

(8,8) (11,12) (15,13)

(16,15)

(4,1) (5,2) (9,6) (10,7) (12,9) (13,10) (14,11)

Peter Wood (BBK) XML Data Management 233 / 337

Evaluating XPath Queries

Element-partitioned relations for example

a
pre post
1 16

b
pre post
2 5
3 3
7 14

11 12

c
pre post
8 8

d
pre post
6 4
15 13

e
pre post
4 1
9 6
12 9

f
pre post
16 15

g
pre post
5 2

10 7
13 10
14 11

Peter Wood (BBK) XML Data Management 234 / 337

Evaluating XPath Queries

Evaluation of descendant patterns

Assume we want to evaluate the basic pattern corresponding to
b//g

This pattern may need to be joined to the results calculated for
other basic patterns
So, in general, we need to find all pairs (x , y) of nodes where

I x is an element with name b
I y is an element with name g
I y is a descendant of x

Peter Wood (BBK) XML Data Management 235 / 337

Evaluating XPath Queries

Evaluation of descendant patterns (2)

We could take every node ID from the b relation and compare it to
every node ID from the g relation
Each time we can test whether the g-node is a descendant of the
b-node using the (pre, post) identifiers
But this method will take time proportional to n ×m, if there are n
b-nodes and m g-nodes
In particular, one of the relations is scanned many times
This is similar to a nested-loops implementation of a relational
join, which is known to be inefficient
Can we do better?

Peter Wood (BBK) XML Data Management 236 / 337

Evaluating XPath Queries

Stack-based join algorithm

We will look at an elegant method for evaluation of descendant
patterns that uses an auxiliary stack
This is called the stack-based join (SBJ) algorithm
SBJ reads each ID from each relation only once
SBJ assumes that the IDs in each relation are sorted, essentially
by their pre-order values (as in the earlier slide)
We will illustrate the method by example

Peter Wood (BBK) XML Data Management 237 / 337

Evaluating XPath Queries

Stack-based join algorithm — example

(2,5) (5,2)
(3,3) (10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)

Stack

SBJ starts by pushing the first ancestor (that is, b node) ID,
namely (2,5), on the stack
Then, STD continues to examine the IDs in the b ancestor input
While the current ancestor ID is a descendant of the top of the
stack, the current ancestor ID is pushed on the stack
So the second b ID, (3,3), is pushed on the stack, since it is a
descendant of (2,5)

Peter Wood (BBK) XML Data Management 238 / 337

Evaluating XPath Queries

Stack-based join algorithm — example

(2,5)

(5,2)
(3,3) (10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(3,3)

(2,5)
Stack

SBJ starts by pushing the first ancestor (that is, b node) ID,
namely (2,5), on the stack

Then, STD continues to examine the IDs in the b ancestor input
While the current ancestor ID is a descendant of the top of the
stack, the current ancestor ID is pushed on the stack
So the second b ID, (3,3), is pushed on the stack, since it is a
descendant of (2,5)

Peter Wood (BBK) XML Data Management 238 / 337

Evaluating XPath Queries

Stack-based join algorithm — example

(2,5)

(5,2)
(3,3) (10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(3,3)

(2,5)
Stack

SBJ starts by pushing the first ancestor (that is, b node) ID,
namely (2,5), on the stack
Then, STD continues to examine the IDs in the b ancestor input
While the current ancestor ID is a descendant of the top of the
stack, the current ancestor ID is pushed on the stack

So the second b ID, (3,3), is pushed on the stack, since it is a
descendant of (2,5)

Peter Wood (BBK) XML Data Management 238 / 337

Evaluating XPath Queries

Stack-based join algorithm — example

(2,5)

(5,2)

(3,3)

(10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

SBJ starts by pushing the first ancestor (that is, b node) ID,
namely (2,5), on the stack
Then, STD continues to examine the IDs in the b ancestor input
While the current ancestor ID is a descendant of the top of the
stack, the current ancestor ID is pushed on the stack
So the second b ID, (3,3), is pushed on the stack, since it is a
descendant of (2,5)

Peter Wood (BBK) XML Data Management 238 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (2)
(5,2)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

Output

(3,3), (5,2)
(2,5), (5,2)

The third ID in the b input, (7,14), is not a descendant of current
stack top, namely (3,3)
Therefore, SBJ stops pushing b IDs on the stack and considers
the first descendant ID, to see if it has matches on the stack

The first g node, namely (5,2), is a descendant of both b nodes on
the stack, leading to the first two output tuples
Note that the stack does not change when output is produced
This is because there may be further descendant IDs to match the
ancestor IDs on the stack

Peter Wood (BBK) XML Data Management 239 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (2)

(5,2)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

The third ID in the b input, (7,14), is not a descendant of current
stack top, namely (3,3)
Therefore, SBJ stops pushing b IDs on the stack and considers
the first descendant ID, to see if it has matches on the stack
The first g node, namely (5,2), is a descendant of both b nodes on
the stack, leading to the first two output tuples

Note that the stack does not change when output is produced
This is because there may be further descendant IDs to match the
ancestor IDs on the stack

Peter Wood (BBK) XML Data Management 239 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (2)

(5,2)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

The third ID in the b input, (7,14), is not a descendant of current
stack top, namely (3,3)
Therefore, SBJ stops pushing b IDs on the stack and considers
the first descendant ID, to see if it has matches on the stack
The first g node, namely (5,2), is a descendant of both b nodes on
the stack, leading to the first two output tuples
Note that the stack does not change when output is produced
This is because there may be further descendant IDs to match the
ancestor IDs on the stack
Peter Wood (BBK) XML Data Management 239 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (3)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

A descendant ID which has been compared with ancestor IDs on
the stack and has produced output tuples, can be discarded
Now the g ID (10,7) encounters no matches on the stack
Moreover, (10,7) occurs in the document after the nodes on the
stack
Therefore, no descendant node ID yet to be examined can have
ancestors on this stack
This is because the input g IDs are sorted

Therefore, at this point, the stack is emptied

Peter Wood (BBK) XML Data Management 240 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (3)

(10,7)
(7,14) (13,10)
(11,12) (14,11)
b IDs g IDs

(3,3)
(2,5)

Stack

Output
(3,3), (5,2)
(2,5), (5,2)

A descendant ID which has been compared with ancestor IDs on
the stack and has produced output tuples, can be discarded
Now the g ID (10,7) encounters no matches on the stack
Moreover, (10,7) occurs in the document after the nodes on the
stack
Therefore, no descendant node ID yet to be examined can have
ancestors on this stack
This is because the input g IDs are sorted
Therefore, at this point, the stack is emptied

Peter Wood (BBK) XML Data Management 240 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)
(7,14) (13,10)

(11,12) (14,11)
b IDs g IDs

(11,12)
(7,14)

Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack
followed by its descendant, in the ancestor input, (11,12)
The next descendant ID is (10,7)
This produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)

(7,14)

(13,10)
(11,12) (14,11)
b IDs g IDs

(11,12)

(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack

followed by its descendant, in the ancestor input, (11,12)
The next descendant ID is (10,7)
This produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)

(7,14)

(13,10)

(11,12)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack
followed by its descendant, in the ancestor input, (11,12)

The next descendant ID is (10,7)
This produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)

(7,14)

(13,10)

(11,12)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack
followed by its descendant, in the ancestor input, (11,12)
The next descendant ID is (10,7)

This produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (4)

(10,7)
(7,14)

(13,10)

(11,12)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

Next the ancestor ID (7,14) is pushed on the stack
followed by its descendant, in the ancestor input, (11,12)
The next descendant ID is (10,7)
This produces a result with (7,14) and is then discarded

Peter Wood (BBK) XML Data Management 241 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)
(14,11)

b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

(11,12), (13,10)
(7,14), (13,10)
(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)
This leads to two new tuples added to the output
The next descendant ID is (14,11)
This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)
(14,11)

b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)

(11,12), (13,10)
(7,14), (13,10)
(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)

This leads to two new tuples added to the output
The next descendant ID is (14,11)
This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(11,12), (13,10)
(7,14), (13,10)

(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)
This leads to two new tuples added to the output

The next descendant ID is (14,11)
This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)

(14,11)
b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(11,12), (13,10)
(7,14), (13,10)

(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)
This leads to two new tuples added to the output
The next descendant ID is (14,11)

This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 337

Evaluating XPath Queries

Stack-based join algorithm — example (5)

(13,10)
(14,11)

b IDs g IDs

(11,12)
(7,14)
Stack

Output
(3,3), (5,2)
(2,5), (5,2)

(7,14), (10,7)
(11,12), (13,10)
(7,14), (13,10)
(11,12), (14,11)
(7,14), (14,11)

The next descendant ID is (13,10)
This leads to two new tuples added to the output
The next descendant ID is (14,11)
This also leads to two more output tuples

Peter Wood (BBK) XML Data Management 242 / 337

Evaluating XPath Queries

Other approaches

The stack-based join algorithm is as efficient as possible for single
descendant basic patterns
But an overall algorithm for tree pattern evaluation still has to join
the answers from basic patterns back together
The size of intermediate results can be unnecessarily large
Another approach is to evaluate the entire pattern in one operation
One algorithm for this is called holistic twig join

Peter Wood (BBK) XML Data Management 243 / 337

Evaluating XPath Queries

Summary
We considered some issues for dealing with querying large XML
documents
These included methods for fragmenting documents
and efficient evaluation methods, particularly for
ancestor-descendant basic patterns
For more information, see Chapter 4 on “XML Query Evaluation”
in the book “Web Data Management”
The original stack-based join algorithm is from S. Al-Khalifa, H.V.
Jagadish, J.M. Patel, Y. Wu, N. Koudas, and D. Srivastava.
“Structural joins: A primitive for efficient XML query pattern
matching.” In Proc. Int. Conf. on Data Engineering (ICDE), 2002.
Holistic twig join is described in N. Bruno, N. Koudas, and D.
Srivastava. “Holistic twig joins: optimal XML pattern matching.” In
Proc. ACM Int. Conf. on the Management of Data (SIGMOD),
2002.
Peter Wood (BBK) XML Data Management 244 / 337

XQuery

Chapter 9

XQuery

Peter Wood (BBK) XML Data Management 245 / 337

XQuery

Motivation

Now that we have XPath, what do we need XQuery for?
XPath was designed for addressing parts of existing XML
documents
XPath cannot

I create new XML nodes
I perform joins between parts of a document (or many documents)
I re-order the output it produces
I . . .

Furthermore, XPath
I has a very simple type system
I can be hard to read and understand (due to its conciseness)

Peter Wood (BBK) XML Data Management 246 / 337

XQuery

Data Model

XQuery closely follows the XML Schema data model
The most general data type is an item
An item is either a (single) node or an atomic value

Peter Wood (BBK) XML Data Management 247 / 337

XQuery

Data Model (2)

XQuery works on sequences, which are series of items
In XQuery every value is a sequence

I There is no distinction between a single item and a sequence of
length one

Sequences can only contain items; they cannot contain other
sequences

Peter Wood (BBK) XML Data Management 248 / 337

XQuery

Document Representation

Every document is represented as a tree of nodes
Every node has a unique node identity that distinguishes it from
other nodes (independent of any ID attributes)
The first node in any document is the document node (which
contains the whole document)
The order in which the nodes occur in an XML document is called
the document order

Peter Wood (BBK) XML Data Management 249 / 337

XQuery

Document Representation (2)

Attributes are not considered children of an element
I They occur after their element and before its first child
I The relative order within the attributes of an element is

implementation-dependent

Peter Wood (BBK) XML Data Management 250 / 337

XQuery

Query Language

We are now going to look at the query language itself
I Basics
I Creating nodes/documents
I FLWOR expressions
I Advanced topics

Peter Wood (BBK) XML Data Management 251 / 337

XQuery

Comments

XQuery uses “smileys” to begin and end comments:
(: This is a comment :)

These are comments found in a query (to comment the query)
I Not to be confused with comments in XML documents

Peter Wood (BBK) XML Data Management 252 / 337

XQuery

Literals

XQuery supports numeric and string literals
There are three kinds of numeric literals

I Integers (e.g. 3)
I Decimals (e.g. -1.23)
I Doubles (e.g. 1.2e5)

String literals are delimited by quotation marks or apostrophes
I “a string”
I ’a string’
I ’This is a “string”’

Peter Wood (BBK) XML Data Management 253 / 337

XQuery

Input Functions

XQuery uses input functions to identify the data to be queried
There are two different input functions, each taking a single
argument

I doc()

F Returns an entire document (i.e. the document node)
F Document is identified by a Universal Resource Identifier (URI)

I collection()

F Returns any sequence of nodes that is associated with a URI
F How the sequence is identified is implementation-dependant
F For example, eXist allows a database administrator to define

collections, each containing a number of documents

Peter Wood (BBK) XML Data Management 254 / 337

XQuery

Sample Data

In order to illustrate XQuery queries, we use a sample data file
books.xml which is based on bibliography data

<bib>

<book year='1994'>

<title>TCP/IP Illustrated</title>

<author>

<last>Stevens</last>

<first>W.</first>

</author>

<publisher>Addison Wesley</publisher>

<price>65.95</price>

</book>

Peter Wood (BBK) XML Data Management 255 / 337

XQuery

Sample Data (cont’d)

<book year='1992'>

<title>

Advanced Programming in the UNIX environment

</title>

<author>

<last>Stevens</last>

<first>W.</first>

</author>

<publisher>Addison Wesley</publisher>

<price>65.95</price>

</book>

Peter Wood (BBK) XML Data Management 256 / 337

XQuery

Sample Data (cont’d)

<book year='2000'>

<title>Data on the Web</title>

<author>

<last>Abiteboul</last> <first>Serge</first>

</author>

<author>

<last>Buneman</last> <first>Peter</first>

</author>

<author>

<last>Suciu</last> <first>Dan</first>

</author>

<publisher>Morgan Kaufmann</publisher>

<price>39.95</price>

</book>

Peter Wood (BBK) XML Data Management 257 / 337

XQuery

Sample Data (cont’d)

<book year='1999'>

<title>

The Economics of Technology and Content for Digital TV

</title>

<editor>

<last>Gerbarg</last>

<first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic</publisher>

<price>129.95</price>

</book>

</bib>

Peter Wood (BBK) XML Data Management 258 / 337

XQuery

Input Functions (2)

doc("books.xml") returns the entire document
A run-time error is raised if the doc function is unable to locate the
document

Peter Wood (BBK) XML Data Management 259 / 337

XQuery

Input Functions (3)

XQuery uses XPath to locate nodes in XML data
An XPath expression can be appended to a doc (or collection)
function to select specific nodes
For example, doc("books.xml")//book
returns all book nodes of books.xml

Peter Wood (BBK) XML Data Management 260 / 337

XQuery

Creating Nodes

So far, XQuery does not look much more powerful than XPath
We only located nodes in XML documents
Now we take a look at how to create nodes
Note that this creates nodes in the output of a query; it does not
update the document being queried

Peter Wood (BBK) XML Data Management 261 / 337

XQuery

Creating Nodes (2)

Elements, attributes, text nodes, processing instructions, and
comment nodes can all be created using the same syntax as XML
The following element constructor creates a book element:
<book year='1977'>

<title>Harold and the Purple Crayon</title>
<author>

<last>Johnson</last>
<first>Crockett</first>

</author>
<publisher>

Harper Collins Juvenile Books
</publisher>
<price>14.95</price>

</book>

Peter Wood (BBK) XML Data Management 262 / 337

XQuery

Creating Nodes (3)

Document nodes do not have an explicit syntax in XML
XQuery provides a special document node constructor
The query
document {}

creates an empty document node

Peter Wood (BBK) XML Data Management 263 / 337

XQuery

Creating Nodes (4)

Document node constructor can be combined with other
constructors to create entire documents
document {

<?xml-stylesheet type='text/xsl' href='trans.xslt'?>
<!-- I love this book -->
<book year='1977'>

<title>Harold and the Purple Crayon</title>
<author>

<last>Johnson</last>
<first>Crockett</first>

</author>
<publisher>

Harper Collins Juvenile Books
</publisher>
<price>14.95</price>

</book>
}

Peter Wood (BBK) XML Data Management 264 / 337

XQuery

Creating Nodes (5)

Constructors can be combined with other XQuery expressions to
generate content dynamically
In element constructors, curly braces { } delimit enclosed
expressions which are evaluated to create content
Enclosed expressions may occur in the content of an element or
the value of an attribute

Peter Wood (BBK) XML Data Management 265 / 337

XQuery

Creating Nodes (6)

This query creates a list of book titles from books.xml

<titles count =
'{ count(doc("books.xml")//title) }'>
{
doc("books.xml")//title

}
</titles>

The result is:
<titles count="4">

<title>TCP/IP Illustrated</title>
<title>Advanced Programming ...</title>
<title>Data on the Web</title>
<title>The Economics of ...</title>

</titles>

Peter Wood (BBK) XML Data Management 266 / 337

XQuery

Whitespace

Implementations may discard boundary whitespace (whitespace
between tags with no intervening non-whitespace)
This whitespace can be preserved by an xmlspace declaration in
the prolog of a query
The prolog of a query is an optional section setting up the
compile-time context for the rest of the query

Peter Wood (BBK) XML Data Management 267 / 337

XQuery

Whitespace (2)

The following query declares that all whitespace in element
constructors must be preserved (which will output the element in
exactly the same format)

declare xmlspace preserve;

<author>

<last>Stevens</last>

<first>W.</first>

</author>

Omitting this declaration (or setting the mode to strip) will give:
<author><last>Stevens</last><first>W.</first></author>

Peter Wood (BBK) XML Data Management 268 / 337

XQuery

Combining and Restructuring

The expressiveness of XQuery goes beyond just creating nodes
Information from one or more sources can be combined and
restructured to create new results
We are going to have a look at the most important expressions
and functions

Peter Wood (BBK) XML Data Management 269 / 337

XQuery

FLWOR

FLWOR expressions (pronounced “flower”) are one of the most
powerful and common expressions in XQuery
Syntactically, they show similarity to the select-from-where
statements in SQL
However, FLWOR expressions do not operate on tables, rows, and
columns

Peter Wood (BBK) XML Data Management 270 / 337

XQuery

FLWOR (2)

The name FLWOR is an acronym standing for the first letter of the
clauses that may appear

I For
I Let
I Where
I Order by
I Return

Peter Wood (BBK) XML Data Management 271 / 337

XQuery

FLWOR (3)

The acronym FLWOR roughly follows the order in which the
clauses occur
A FLWOR expression

I starts with one or more for or let clauses (in any order)
I followed by an optional where clause,
I an optional order by clause,
I and a required return clause

Peter Wood (BBK) XML Data Management 272 / 337

XQuery

For and Let Clauses

Every clause in a FLWOR expression is defined in terms of tuples
The for and let clauses create these tuples
Therefore, every FLWOR expression must have at least one for

or let clause
We will start with artificial-looking queries to illustrate the inner
workings of for and let clauses

Peter Wood (BBK) XML Data Management 273 / 337

XQuery

For and Let Clauses (2)

The following query creates an element named tuple in its return
clause

for $i in (1, 2, 3)

return

<tuple><i> { $i } </i></tuple>

We bind the variable $i to the expression (1, 2, 3), which
constructs a sequence of integers
The above query results in:

<tuple><i>1</i></tuple>

<tuple><i>2</i></tuple>

<tuple><i>3</i></tuple>

(a for clause preserves order when it creates tuples)

Peter Wood (BBK) XML Data Management 274 / 337

XQuery

For and Let Clauses (3)

A let clause binds a variable to the entire result of an expression
If there are no for clauses, then a single tuple is created

let $i := (1, 2, 3)

return

<tuple><i> { $i } </i></tuple>

results in:

<tuple><i>1 2 3</i></tuple>

Peter Wood (BBK) XML Data Management 275 / 337

XQuery

For and Let Clauses (4)

Variable bindings of let clauses are added to the tuples
generated by for clauses

for $i in (1, 2, 3)

let $j := ('a', 'b', 'c')

return

<tuple><i>{ $i }</i><j>{ $j }</j></tuple>

results in:

<tuple><i>1</i><j>abc</j></tuple>

<tuple><i>2</i><j>abc</j></tuple>

<tuple><i>3</i><j>abc</j></tuple>

Peter Wood (BBK) XML Data Management 276 / 337

XQuery

For and Let Clauses (5)

for and let clauses can be bound to any XQuery expression
Let us do a more realistic example
List the title of each book in books.xml together with the numbers
of authors:

for $b in doc("books.xml")//book

let $a := $b/author

return

<book> { $b/title,

<count> { count($a) } </count> }

</book>

Peter Wood (BBK) XML Data Management 277 / 337

XQuery

For and Let Clauses (6)

This results in:
<book>

<title>TCP/IP Illustrated</title>
<count>1</count>

</book>
<book>

<title>Advanced Programming ...</title>
<count>1</count>

</book>
<book>

<title>Data on the Web</title>
<count>3</count>

</book>
<book>

<title>The Economics of Technology ...</title>
<count>0</count>

</book>

Peter Wood (BBK) XML Data Management 278 / 337

XQuery

Where Clauses

A where clause eliminates tuples that do not satisfy a particular
condition
A return clause is only evaluated for tuples that “survive” the
where clause
The following query returns only books whose prices are less than
50.00:

for $b in doc("books.xml")//book

where $b/price < 50.00

return $b/title

returns

<title>Data on the Web</title>

Peter Wood (BBK) XML Data Management 279 / 337

XQuery

Order By Clauses

An order by clause sorts the tuples before the return clause is
evaluated
If there is no order by clause, then the results are returned in
document order
The following example lists the titles of books in alphabetical
order:

for $t in doc("books.xml")//title

order by $t

return $t

An order spec may also specify whether to sort in ascending or
descending order (using ascending or descending)

Peter Wood (BBK) XML Data Management 280 / 337

XQuery

Return Clauses

Any XQuery expression may occur in a return clause
Element constructors are very common in return clauses
The following query represents an author’s name as a string in a
single element
for $a in doc("books.xml")//author
return

<author> { string($a/first), " ",
string($a/last) } </author>

results in

<author>W. Stevens</author>
<author>W. Stevens</author>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author>
<author>Dan Suciu</author>

Peter Wood (BBK) XML Data Management 281 / 337

XQuery

Return Clauses (2)

The following query adds another level to the hierarchy:

for $a in doc("books.xml")//author

return

<author>

<name> { $a/first, $a/last } </name>

</author>

results in

<author>

<name>

<first>W.</first>

<last>Stevens</last>

</name>

</author>

...

Peter Wood (BBK) XML Data Management 282 / 337

XQuery

Operators

The operators shown in the queries so far have not been covered
yet
XQuery has three different kinds of operators

I Arithmetic operators
I Comparison operators
I Sequence operators

Peter Wood (BBK) XML Data Management 283 / 337

XQuery

Arithmetic Operators

XQuery supports the arithmetic operators +, -, *, div, idiv, and
mod

The idiv and mod operators require integer arguments, returning
the quotient and the remainder, respectively
If an operand is a node, atomization is applied (casting the content
to an atomic type)
If an operand is an empty sequence, the result is an empty
sequence
If an operand is untyped, it is cast to a double (raising an error if
the cast fails)

Peter Wood (BBK) XML Data Management 284 / 337

XQuery

Comparison Operators

XQuery has different sets of comparison operators: value
comparisons, general comparisons, node comparisons, and order
comparisons
Value comparison operators compare atomic values:

eq equals
ne not equals
lt less than
le less than or equal to
gt greater than
ge greater than or equal to

Peter Wood (BBK) XML Data Management 285 / 337

XQuery

General Comparisons

The following query raises an error

for $b in doc("books.xml")//book

where $b/author/last eq 'Stevens'

return $b/title

because we try to compare several author names to 'Stevens'

(books may have more than one author)
We need a general comparison operator for this to work
A general comparison returns true if any value in a sequence of
atomic values matches

Peter Wood (BBK) XML Data Management 286 / 337

XQuery

General Comparisons (2)

The following table shows the corresponding general comparison
operator for each value comparison operator

value comparison general comparison
eq =
ne !=
lt <
le <=
gt >
ge >=

Peter Wood (BBK) XML Data Management 287 / 337

XQuery

Built-in Functions

XQuery also offers a set of built-in functions and operators
We focus only on the most common ones here
SQL users will be familiar with the min(), max(), count(), sum(),
and avg() functions
Other familiar functions include

I Numeric functions like round(), floor(), and ceiling()
I String functions like concat(), string-length(), substring(),

upper-case(), lower-case()
I Cast functions for the various atomic types

Peter Wood (BBK) XML Data Management 288 / 337

XQuery

User-Defined Functions

When a query becomes large and complex, it becomes easier to
understand if it is split up into functions
A function is declared in the XQuery prolog
Because the default namespace used for functions in XQuery
corresponds to the XPath functions, a user-defined function has to
be declared in a different namespace
This is done by declaring a namespace and associated prefix
For example, if the titles of books written by a given author are
needed in different places in a query, a function could be declared
and invoked as shown on the next slide

Peter Wood (BBK) XML Data Management 289 / 337

XQuery

User-Defined Functions (2)

The function is declared as follows:

declare namespace my="urn:local";

declare function my:books-by-author($last, $first)

as element()*

{

for $b in doc("books.xml")//book

for $a in $b/author

where $a/first = $first and $a/last = $last

return $b/title

};

It can be invoked as follows:

my:books-by-author('Abiteboul','Serge')

Peter Wood (BBK) XML Data Management 290 / 337

XQuery

Library Modules

Functions can be put into library modules, which can be imported
by any query
Every module in XQuery is either a main module (which contains
a query body) or a library module (which has no query body)
A library module begins with a module declaration which provides
a URI for identification:

module "http://example.com/xq/book"

declare function ...

declare function ...

Peter Wood (BBK) XML Data Management 291 / 337

XQuery

Library Modules (2)

Any module can import another module using a import module

declaration
This declaration has to specify a URI and may specify a location
where the module can be found

import module "http://example.com/xq/book"

at "file:///home/xquery/..."

Peter Wood (BBK) XML Data Management 292 / 337

XQuery

Positional Variables

The for clause supports positional variables
This identifies the position of a given item in the sequence
generated by an expression
The following query returns the titles of books with an attribute
that numbers the books:

for $t at $i in doc("books.xml")//title

return

<title pos=' { $i } '>

{ string($t) }

</title>

Peter Wood (BBK) XML Data Management 293 / 337

XQuery

Positional Variables (2)

The output of this query looks like this:

<title pos="1">

TCP/IP Illustrated

</title>

<title pos="2">

Advanced Programming in ...

</title>

<title pos="3">

Data on the Web

</title>

<title pos="4">

The Economics of Technology ...

</title>

Peter Wood (BBK) XML Data Management 294 / 337

XQuery

Eliminating Duplicates

Data (or intermediate query results) often contain duplicate values
The following query returns one of the authors twice

doc("books.xml")//author/last

which outputs

<last>Stevens</last>

<last>Stevens</last>

<last>Abiteboul</last>

<last>Buneman</last>

<last>Suciu</last>

Peter Wood (BBK) XML Data Management 295 / 337

XQuery

Eliminating Duplicates (2)

The distinct-values() function is used to remove duplicate
values
It extracts values of a sequence of nodes and creates a sequence
of unique values
Example:

distinct-values(doc("books.xml")//author/last)

which outputs

Stevens Abiteboul Buneman Suciu

Peter Wood (BBK) XML Data Management 296 / 337

XQuery

Combining Data Sources

A query may bind multiple variables in a for clause to combine
data from different expressions
Suppose we have a file named reviews.xml that contains book
reviews:

<reviews>

<entry>

<title>Data on the Web</title>

<price>34.95</price>

<review>

A very good discussion of

semi-structured databases ...

</review>

</entry>

...

Peter Wood (BBK) XML Data Management 297 / 337

XQuery

Combining Data Sources (2)

A FLWOR expression can bind one variable to the bibliography
data and another to the review data
In the following query we join data from the two files:

for $t in doc("books.xml")//title,

$e in doc("reviews.xml")//entry

where $t = $e/title

return

<review>

{ $t, $e/review }

</review>

Peter Wood (BBK) XML Data Management 298 / 337

XQuery

Combining Data Sources (3)

This returns the following answer:
<review>

<title>TCP/IP Illustrated</title>
<review>

One of the best books on TCP/IP.
</review>

</review>
<review>

<title>Advanced Programming in the ...</title>
<review>

A clear and detailed discussion of ...
</review>

</review>
...

Peter Wood (BBK) XML Data Management 299 / 337

XQuery

Inverting Hierarchies

XQuery can be used to do general transformations
In the example file, books are sorted by title
If we want to group books by publisher, we have to “pull up” the
publisher element (i.e., invert the hierarchy of the document)
The next slide shows a query to do this

Peter Wood (BBK) XML Data Management 300 / 337

XQuery

Inverting Hierarchies (2)

<listings> {

for $p in

distinct-values(doc("books.xml")//publisher)

order by $p

return

<result>

{ $p }

{ for $b in doc("books.xml")//book

where $b/publisher = $p

order by $b/title

return $b/title

}

</result>

}

</listings>

Peter Wood (BBK) XML Data Management 301 / 337

XQuery

Inverting Hierarchies (3)

Result:

<listings>

<result>Addison-Wesley

<title>Advanced Programming ...</title>

<title>TCP/IP Illustrated</title>

</result>

<result>Kluwer Academic Publishers

<title>The Economics of ...</title>

</result>

<result>Morgan Kaufmann Publishers

<title>Data on the Web</title>

</result>

</listings>

Peter Wood (BBK) XML Data Management 302 / 337

XQuery

Quantifiers

Some queries need to determine whether
I at least one item in a sequence satisfies a condition
I every item in sequence satisfies a condition

This is done using quantifiers:
I some is an existential quantifier
I every is a universal quantifier

Peter Wood (BBK) XML Data Management 303 / 337

XQuery

Quantifiers (2)

The following query shows an existential quantifier
We are looking for a book where at least one of the authors has
the last name ‘Buneman’:

for $b in doc("books.xml")//book

where some $a in $b/author

satisfies ($a/last = 'Buneman')

return $b/title

which returns:

<title>Data on the Web</title>

Peter Wood (BBK) XML Data Management 304 / 337

XQuery

Quantifiers (3)

The following query shows a universal quantifier
We are looking for a book where all of the authors have the last
name ‘Stevens’:

for $b in doc("books.xml")//book

where every $a in $b/author

satisfies ($a/last = 'Stevens')

return $b/title

which returns:

<title>TCP/IP Illustrated</title>

<title>Advanced Programming ...</title>

<title>The Economics of Technology ...</title>

Peter Wood (BBK) XML Data Management 305 / 337

XQuery

Quantifiers (4)

A universal quantifier applied to an empty sequence always yields
true (there is no item violating the condition)
An existential quantifier applied to an empty sequence always
yields false (there is no item satisfying the condition)

Peter Wood (BBK) XML Data Management 306 / 337

XQuery

Conditional Expressions

XQuery’s conditional expressions (if - then - else) are used in
the same way as in other languages
In XQuery, both the then and the else clause are required
The empty sequence () can be used to specify that a clause
should return nothing
The following query returns all authors for books with up to two
authors and “et al.” for any remaining authors

Peter Wood (BBK) XML Data Management 307 / 337

XQuery

Conditional Expressions (2)

for $b in doc("books.xml")//book

return

<book> { $b/title } {

for $a at $i in $b/author

where $i <= 2

return <author> { string($a/last), ", ",

string($a/first) }

</author>

}

{ if (count($b/author) > 2)

then <author> et al. </author>

else ()

}

</book>

Peter Wood (BBK) XML Data Management 308 / 337

XQuery

Conditional Expressions (3)
Result:

<book>
<title>TCP/IP Illustrated</title>
<author>Stevens, W.</author>

</book>
<book>

<title>Advanced Programming in ...</title>
<author>Stevens, W.</author>

</book>
<book>

<title>Data on the Web</title>
<author>Abiteboul, Serge</author>
<author>Buneman, Peter</author>
<author>et al. </author>

</book>
<book>

<title>The Economics of Technology ...</title>
</book>

Peter Wood (BBK) XML Data Management 309 / 337

XQuery

Summary

XQuery was designed to be compact and compositional
It is well-suited to XML-processing tasks like data integration and
data transformation

Peter Wood (BBK) XML Data Management 310 / 337

Relational Mapping

Chapter 10

Mapping XML to the Relational
World

Peter Wood (BBK) XML Data Management 311 / 337

Relational Mapping

Introduction

XQuery and other XML query languages operate on XML
documents
Up to now we have assumed that these documents exist in files or
network messages
Often, however, documents are generated on demand from
different representations and sources
One important source of data are relational database
management systems (RDBMS)

Peter Wood (BBK) XML Data Management 312 / 337

Relational Mapping

Introduction (2)

RDBMS are not going to vanish due to the arrival of the new XML
standards
Quite the contrary, RDBMS are probably going to stay with us for
a long time to come
Building bridges between the XML and the RDBMS world is
therefore very important
In this chapter we are going to have a look at different approaches
for mappings between XML and relational data
SQL/XML is an important ISO standard that addresses these
issues

Peter Wood (BBK) XML Data Management 313 / 337

Relational Mapping

XML Publishing

Assume that the original data is relational
The application, however, wants to access this data as XML
So we have to create an XML representation of the relational data
This is called XML publishing or composing

Peter Wood (BBK) XML Data Management 314 / 337

Relational Mapping

XML Shredding

The original data may instead be in XML
The question now is how to store this data in a RDBMS
The simplest method is to store the XML directly as the value of
some attribute/column in a relation
More generally, this process is called XML shredding or
decomposing
Shredding can be done in many ways, depending on

I how structured the data is: ranging from very structured to quite
unstructured marked-up text

I what kind of schema information is available

Peter Wood (BBK) XML Data Management 315 / 337

Relational Mapping

SQL/XML

The ISO SQL/XML standard was first produced in 2003
It was revised in 2006, 2008 and 2011
It provides a new SQL data type (XML) to store XML in an RDBMS
SQL/XML provides new SQL functions to generate XML
documents or fragments from relational data (called publishing
functions)
In addition to this, there are default mapping rules for SQL
datatypes appearing in XML-generating operators
It also provides additional querying capabilities (using XQuery)

Peter Wood (BBK) XML Data Management 316 / 337

Relational Mapping

Using the XML Data Type

The simplest way of storing XML in an RDBMS is to use the
SQL/XML XML data type
A column of type XML in the RDBMS can contain any XQuery
sequence
Some other columns may also be present
Example (the purchaseorder column is of type XML):
id receivedate purchaseorder

4023 2001-12-01 <purchaseOrder>
<originator billId='0013579'>

<contactName>
...

</purchaseOrder>

5327 2002-04-23 <purchaseOrder>
<originator billId='0232345'>

...

Peter Wood (BBK) XML Data Management 317 / 337

Relational Mapping

Using the XML Data Type (2)

The single column mapping is quite straightforward; the XML
document (or sequence) is loaded into the RDBMS “as is”
A value of type XML can be any valid XQuery sequence or the
SQL NULL value
In fact, a number of parameterised subtypes of the XML type are
defined in the standard:

I XML (SEQUENCE)
I XML (ANY CONTENT)
I XML (ANY DOCUMENT)
I . . .

We will not study these subtypes

Peter Wood (BBK) XML Data Management 318 / 337

Relational Mapping

Publishing Techniques

SQL/XML provides two different techniques for publishing
relational data as XML

I A default mapping from tables to XML
I Using the SQL/XML publishing functions

The first of these is very simple, but limited in how useful it is
The second is much more flexible

Peter Wood (BBK) XML Data Management 319 / 337

Relational Mapping

Default Mapping

The default mapping is the simplest publishing technique
In the default mapping, the names of tables and columns become
the names of XML elements, with the inclusion of row elements for
the each table row
But the default mapping does not allow for publishing only parts of
tables or the result of a query as XML
Also, many applications may need XML data in specific formats
that do not correspond to the result of the default mapping
These limitations mean that applications may have to perform
extensive post-processing on the generated document

Peter Wood (BBK) XML Data Management 320 / 337

Relational Mapping

Example
Table customer:

name acctnum address

Albert Ng 012ab3f 123 Main St., ...
Francis Smith 032cf5d 42 Seneca, ...
...

XML generated by the default mapping:
<customer>

<row>
<name>Albert Ng</name>
<acctnum>012ab3f</acctnum>
<address>123 Main St., ...</address>

</row>
<row>

<name>Francis Smith</name>
<acctnum>032cf5d</acctnum>
<address>42 Seneca, ...</address>

</row>
...

</customer>

Peter Wood (BBK) XML Data Management 321 / 337

Relational Mapping

Default Mapping (2)

The default mapping can also be used for all tables in a schema,
or all schemas in a catalog
In each case, an extra level is introduced in the output by
elements representing schema or catalog names
The mapping depends on rules for mapping SQL identifiers to
XML names, and SQL data types to XML schema data types
As well as producing an XML document representing the relational
data, the default mapping produces an XML schema document

Peter Wood (BBK) XML Data Management 322 / 337

Relational Mapping

SQL/XML functions for publishing

XMLELEMENT() to produce an XML element
XMLATTRIBUTES() to produce XML attributes
XMLFOREST() which creates a forest of elements
XMLCONCAT() which concatenates a list of XML elements
XMLAGG() which creates a forest of XML elements based on a
GROUP BY clause in the SQL query
(We will consider only the first three functions)

Peter Wood (BBK) XML Data Management 323 / 337

Relational Mapping

Example using XMLELEMENT()

This example assumes the customer table used previously:

SELECT c.acctnum,

XMLELEMENT (NAME "invoice",

'To ',

XMLELEMENT (NAME "name", c.name)

) AS "invoice"

FROM customer c

This creates an XML element called invoice with mixed content:

acctnum invoice

012ab3f <invoice>To <name>Albert Ng</name></invoice>

032cf5d <invoice>To <name>Francis Smith</name></invoice>

...

Peter Wood (BBK) XML Data Management 324 / 337

Relational Mapping

Example using XMLATTRIBUTES()

Once again using the customer table:

SELECT c.acctnum,

XMLELEMENT (NAME "invoice",

XMLATTRIBUTES (c.acctnum AS "id", c.name)

) AS "invoice"

FROM customer c

This creates an XML element with attributes and empty content:

acctnum invoice

012ab3f <invoice id="012ab3f" name="Albert Ng"/>

032cf5d <invoice id="032cf5d" name="Francis Smith"/>

...

Obviously attributes and nested elements can be combined

Peter Wood (BBK) XML Data Management 325 / 337

Relational Mapping

XMLFOREST()

XMLFOREST() produces a forest of elements
Each of its arguments is used to create a new element
Like XMLATTRIBUTES(), an explicit name for the element can be
provided, or the name of the column can be used implicitly

Peter Wood (BBK) XML Data Management 326 / 337

Relational Mapping

Shredding

There are different ways of shredding XML documents
If the documents are well-structured and follow a DTD or XML
schema:

I We can extract this schema information and build a relational
schema that mirrors this structure

I Each table in this relational schema stores certain parts of the XML
document

If the documents are irregular and do not follow a common
schema:

I We have to use a very general schema for mapping arbitrary XML
trees into an RDBMS

Peter Wood (BBK) XML Data Management 327 / 337

Relational Mapping

Shredding Unstructured Documents

One possibility to handle arbitrary documents is to use a relational
representation that is totally independent of XML schema
information
This representation models XML documents as tree structures
with nodes and edges
We saw an example of this in Chapter 8 with the Edge relation
Every single navigation step requires a join on this table
Alternatives considered in Chapter 8 were

I Element-partitioned relations
I Path-partitioned relations

Peter Wood (BBK) XML Data Management 328 / 337

Relational Mapping

Shredding Structured Documents

The first step is designing the relational schema
Some database vendors offer an automated mapping process
These techniques are often based on annotating an XML schema
definition with information about where the corresponding data is
to be stored in the RDBMS
We are going to have a look at some basic techniques for creating
a relational schema

Peter Wood (BBK) XML Data Management 329 / 337

Relational Mapping

Shredding Structured Documents (2)

Adding extra information:
I Care has to be taken that we will be able to reassemble the XML

document (sometimes more than one document is stored in a table)
I Usually each node/value stored in a table will have a document id

associated with it (regardless of in which table it will end up)
I Storing positions of a node within its parent will allow us to

reconstruct the document order

Peter Wood (BBK) XML Data Management 330 / 337

Relational Mapping

Shredding Structured Documents (3)

During shredding we have two basic table layout choices:
I We can break information across multiple tables
I We can consolidate tables for different elements

A simple algorithm for doing this starts scanning at the top of the
XML document
Each time an element is encountered it is associated with a table
For each child of that element a decision is made whether

I to put it into the same table (inlining)
I or start a new table (and find a way to connect the two tables via a

join attribute)

Peter Wood (BBK) XML Data Management 331 / 337

Relational Mapping

Shredding Structured Documents (4)

There is a simple rule for deciding whether to inline or not:
I If an element can occur multiple times (e.g. has maxOccurs > 1),

then put it in a different table
I If an element has a complex structure (e.g. is of ComplexType),

then put it in a different table
I Simple elements (e.g. of SimpleType) that occur exactly once are

placed in the same table as their parent element

What about optional elements?
I Inlining optional elements may lead to many NULL values
I Putting them into their own table results in expensive join operations
I Neither choice is optimal in all cases

Peter Wood (BBK) XML Data Management 332 / 337

Relational Mapping

Example

Consider our books.xml example from Chapter 9
Since year, title, publisher and price each occur once, they
can be placed in the same book table
Since author can occur many times, it is placed in a different table
Since editor is complex, it is placed in a different table
The next slide shows the result

Peter Wood (BBK) XML Data Management 333 / 337

Relational Mapping

Example (2)

book

id year title publisher price

1 1994 TCP/IP 65.95

2 1992 Advanced 65.95

3 2000 Data on 39.95

4 1999 The Economics 129.95

author

id last first book

5 Stevens W. 1

6 Stevens W. 2

7 Abiteboul Serge 3

8 Buneman Peter 3

9 Suciu Dan 3

editor

id last first affiliation book

10 Gerbarg Darcy CITI 4

Peter Wood (BBK) XML Data Management 334 / 337

Relational Mapping

Shredding Structured Documents (5)

After shredding XML documents, it may be possible to consolidate
tables
Some element types may appear multiple times in an XML
document at different places (e.g. names or addresses)
As long as the attributes are used in a consistent way, these
different tables can be merged into one
Shredding, in general, is a complicated process and there are
many possible solutions

Peter Wood (BBK) XML Data Management 335 / 337

Relational Mapping

Conclusion

The SQL/XML XML data type can handle any kind of XML data
For the shredding approach some kind of XML schema
information is helpful
It is quite expensive for the shredding approach to reassemble
whole documents

Peter Wood (BBK) XML Data Management 336 / 337

Relational Mapping

Summary

There are a variety of techniques for mapping between XML and
relational data
Facilities for achieving this mapping are provided by database
vendors or third party vendors (e.g. for middleware components)
Which actual features are necessary depends mostly on the
requirements of the application

Peter Wood (BBK) XML Data Management 337 / 337

	Introduction
	XML Fundamentals
	Document Type Definitions
	XML Schema Definition Language
	Relax NG
	XPath
	Optimising XPath Queries
	Evaluating XPath Queries
	XQuery
	Relational Mapping

